1个回答
展开全部
解:分享一种解法,用无穷小量替换。x→0时,e^(x^2)~1+x^2+(1/2!)x^4,cosx~1-(1/2!)x^2+(1/4!)x^4,sinx~x-(1/3!)x^3,
∴e^(x^2)+2cosx-3~1+x^2+(1/2!)x^4+2[1-(1/2!)x^2+(1/4!)x^4]-3=(7/12)x^4,(sinx)^2~(x^2)[1-(1/6)x^2]^2,
∴原式=lim(x→0)[(7/12)x^4]/{(1+tanx)(x^4)[1-(1/6)x^2]^2}=(7/12)lim(x→0)1/{(1+tanx)[1-(1/6)x^2]^2}=7/12。
供参考。
∴e^(x^2)+2cosx-3~1+x^2+(1/2!)x^4+2[1-(1/2!)x^2+(1/4!)x^4]-3=(7/12)x^4,(sinx)^2~(x^2)[1-(1/6)x^2]^2,
∴原式=lim(x→0)[(7/12)x^4]/{(1+tanx)(x^4)[1-(1/6)x^2]^2}=(7/12)lim(x→0)1/{(1+tanx)[1-(1/6)x^2]^2}=7/12。
供参考。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询