第二题怎么做什么,求解题过程
展开全部
1)
a(n) = S(n) - S(n-1) = n^2 - (n-1)^2 + n - (n-1) = 2n-1 + 1 = 2n
2)
1/(a(n)a(n+1)) = 1/(2n(2n+2)) = 1/4 [1/n - 1/(n+1)]
T(n) = 1/4 [ 1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 .... + 1/n - 1/(n+1) ]
T(n) = 1/4 [ 1 - 1/(n+1) ]
a(n) = S(n) - S(n-1) = n^2 - (n-1)^2 + n - (n-1) = 2n-1 + 1 = 2n
2)
1/(a(n)a(n+1)) = 1/(2n(2n+2)) = 1/4 [1/n - 1/(n+1)]
T(n) = 1/4 [ 1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 .... + 1/n - 1/(n+1) ]
T(n) = 1/4 [ 1 - 1/(n+1) ]
更多追问追答
追问
看不懂啊
追答
1/n - 1/(n+1) = (n+1)/[n(n+1)] - n/[n(n+1)] = 1/[n(n+1)]
这个规律了解了就OK了
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询