
求解,万分感谢!
2个回答
展开全部
∫x arcsinx dx
= (1/2) ∫ arcsinx dx^2
= (1/2)x^2 arcsinx - (1/2) ∫ x^2 ( √[1/(1-x^2)] ) dx
设 x = sina
dx = cosa da
∫ x^2 ( √[1/(1-x^2)] ) dx
= ∫ (sina)^2 da
= ∫ (1-cos2a)/2 da
= a/2 - sin2a/4
= arcsinx/2 + x √[1/(1-x^2)]/2
therefore
∫x arcsinx dx
= (1/2)x^2 arcsinx - (1/2) ∫ x^2 (√[1/(1-x^2)) dx
= (1/2)x^2 arcsinx - (arcsinx)/ 4 -x (√[1/(1-x^2))/4 +C
= (1/2) ∫ arcsinx dx^2
= (1/2)x^2 arcsinx - (1/2) ∫ x^2 ( √[1/(1-x^2)] ) dx
设 x = sina
dx = cosa da
∫ x^2 ( √[1/(1-x^2)] ) dx
= ∫ (sina)^2 da
= ∫ (1-cos2a)/2 da
= a/2 - sin2a/4
= arcsinx/2 + x √[1/(1-x^2)]/2
therefore
∫x arcsinx dx
= (1/2)x^2 arcsinx - (1/2) ∫ x^2 (√[1/(1-x^2)) dx
= (1/2)x^2 arcsinx - (arcsinx)/ 4 -x (√[1/(1-x^2))/4 +C
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询