描绘 y=1+[36x/(x+3)²]的图形
解:定义域:x≠-3.
x→∞limy=x→∞lim[1+36x/(x+3)²]=1; 因此有水平渐近线y=1;
x→-3-limy=-∞; x→-3+limy=-∞; 因此有垂直渐近线x=-3;
令y'=[36(x+3)²-72x(x+3)]/(x+3)^4=[36(x+3)-72x]/(x+3)³=36(3-x)/(x+3)³=0
3-x=0,故得驻点x=3;
x<3时y'>0;x>3时y'<0;∴x=3时极大点,极大值f(x)=f(3)=1+3=4;