高中数学,数列,求过程,下一步不知怎么写了
2个回答
展开全部
(1)
n≥2时,
2an=2Sn-2S(n-1)=(n+1)an+1-[na(n-1)+1]
an/n=a(n-1)/(n-1)
a1/1=(3/2)/1=3/2
数列{an/n}是各项均为3/2的常数数列
an/n=3/2
an=3n/2
n=1时,a1=3/2,同样满足表达式
数列{an}的通项公式为an=3n/2
(2)
bn=1/(an+1)²=1/[(3n/2)+1]²=4/(3n+2)²<4/[(3n-1)(3n+2)]=(4/3)[1/(3n-1) -1/(3n+2)]
Tn=b1+b2+...+bn
<(4/3)[1/(3×1-1)-1/(3×2-1)+1/(3×2-1)-1/(3×3-1)+...+1/(3n-1) -1/(3n+2)]
=(4/3)[1/2 -1/(3n+2)]
=2/3 - 4/[3(3n+2)]
4/[3(3n+2)]>0,2/3 -4/[3(3n+2)]<2/3,Tn<2/3
又2/3=20/30,7/10=21/30
2/3<7/10
因此Tn<7/10
n≥2时,
2an=2Sn-2S(n-1)=(n+1)an+1-[na(n-1)+1]
an/n=a(n-1)/(n-1)
a1/1=(3/2)/1=3/2
数列{an/n}是各项均为3/2的常数数列
an/n=3/2
an=3n/2
n=1时,a1=3/2,同样满足表达式
数列{an}的通项公式为an=3n/2
(2)
bn=1/(an+1)²=1/[(3n/2)+1]²=4/(3n+2)²<4/[(3n-1)(3n+2)]=(4/3)[1/(3n-1) -1/(3n+2)]
Tn=b1+b2+...+bn
<(4/3)[1/(3×1-1)-1/(3×2-1)+1/(3×2-1)-1/(3×3-1)+...+1/(3n-1) -1/(3n+2)]
=(4/3)[1/2 -1/(3n+2)]
=2/3 - 4/[3(3n+2)]
4/[3(3n+2)]>0,2/3 -4/[3(3n+2)]<2/3,Tn<2/3
又2/3=20/30,7/10=21/30
2/3<7/10
因此Tn<7/10
更多追问追答
追问
👍
兄弟你通项结果算错了,
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询