展开全部
最小值是1/3,三分之一。
取参数m、n,令a=1/3+m,b=1/3+n,c=1/3-(m+n)。则满足三者之和是1.
a^2+b^2+c^2=(1/9+m^2+2/3*m)+(1/9+n^2+2/3*n)+(1/9+(m+n)^2-2/3*(m+n))
a^2+b^2+c^2=1/9+1/9+1/9+m^2+n^2+(m+n)^2+2/3*m+2/3*n-2/3*(m+n)
a^2+b^2+c^2=1/3+m^2+n^2+(m+n)^2
又因为平方数m^2、n^2、(m+n)^2大于等于0
所以a^2+b^2+c^2最小值是1/3
取参数m、n,令a=1/3+m,b=1/3+n,c=1/3-(m+n)。则满足三者之和是1.
a^2+b^2+c^2=(1/9+m^2+2/3*m)+(1/9+n^2+2/3*n)+(1/9+(m+n)^2-2/3*(m+n))
a^2+b^2+c^2=1/9+1/9+1/9+m^2+n^2+(m+n)^2+2/3*m+2/3*n-2/3*(m+n)
a^2+b^2+c^2=1/3+m^2+n^2+(m+n)^2
又因为平方数m^2、n^2、(m+n)^2大于等于0
所以a^2+b^2+c^2最小值是1/3
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询