e的负x次幂图怎么画?
8个回答
展开全部
如图:
首先,y=e^x就是一个普通的指数函数,经过(0,1)点.
y=e^-x就是将y=e^x的图像关于y轴做轴对称后的图像,因为
f(x)=e^x
的图像与
f(-x)=e^-x
关于y轴对称。
扩展资料:
幂函数的性质
1、正值性质
当α>0时,幂函数y=xα有下列性质:
a、图像都经过点(1,1)(0,0);
b、函数的图像在区间[0,+∞)上是增函数;
c、在第一象限内,α>1时,导数值逐渐增大;α=1时,导数为常数;0<α<1时,导数值逐渐减小,趋近于0;
2、负值性质
当α<0时,幂函数y=xα有下列性质:
a、图像都通过点(1,1);
b、图像在区间(0,+∞)上是减函数;(内容补充:若为X-2,易得到其为偶函数。利用对称性,对称轴是y轴,可得其图像在区间(-∞,0)上单调递增。其余偶函数亦是如此)。
c、在第一象限内,有两条渐近线(即坐标轴),自变量趋近0,函数值趋近+∞,自变量趋近+∞,函数值趋近0。
3、零值性质
当α=0时,幂函数y=xa有下列性质:
a、y=x0的图像是直线y=1去掉一点(0,1)。它的图像不是直线。
参考资料:百度百科_幂函数
展开全部
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
首先,y=e^x就是一个普通的指数函数,经过(0,1)点.
y=e^-x就是将y=e^x的图像关于y轴做轴对称后的图像,因为
f(x)=e^x
的图像与
f(-x)=e^-x
关于y轴对称。
扩展资料:
幂函数的性质
1、正值性质
当α>0时,幂函数y=xα有下列性质:
a、图像都经过点(1,1)(0,0);
b、函数的图像在区间[0,+∞)上是增函数;
c、在第一象限内,α>1时,导数值逐渐增大;α=1时,导数为常数;0<α<1时,导数值逐渐减小,趋近于0;
2、负值性质
当α<0时,幂函数y=xα有下列性质:
a、图像都通过点(1,1);
b、图像在区间(0,+∞)上是减函数;(内容补充:若为X-2,易得到其为偶函数。利用对称性,对称轴是y轴,可得其图像在区间(-∞,0)上单调递增。其余偶函数亦是如此)。
c、在第一象限内,有两条渐近线(即坐标轴),自变量趋近0,函数值趋近+∞,自变量趋近+∞,函数值趋近0。
3、零值性质
当α=0时,幂函数y=xa有下列性质:
a、y=x0的图像是直线y=1去掉一点(0,1)。它的图像不是直线。
y=e^-x就是将y=e^x的图像关于y轴做轴对称后的图像,因为
f(x)=e^x
的图像与
f(-x)=e^-x
关于y轴对称。
扩展资料:
幂函数的性质
1、正值性质
当α>0时,幂函数y=xα有下列性质:
a、图像都经过点(1,1)(0,0);
b、函数的图像在区间[0,+∞)上是增函数;
c、在第一象限内,α>1时,导数值逐渐增大;α=1时,导数为常数;0<α<1时,导数值逐渐减小,趋近于0;
2、负值性质
当α<0时,幂函数y=xα有下列性质:
a、图像都通过点(1,1);
b、图像在区间(0,+∞)上是减函数;(内容补充:若为X-2,易得到其为偶函数。利用对称性,对称轴是y轴,可得其图像在区间(-∞,0)上单调递增。其余偶函数亦是如此)。
c、在第一象限内,有两条渐近线(即坐标轴),自变量趋近0,函数值趋近+∞,自变量趋近+∞,函数值趋近0。
3、零值性质
当α=0时,幂函数y=xa有下列性质:
a、y=x0的图像是直线y=1去掉一点(0,1)。它的图像不是直线。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
e的负x次幂的图像可以通过绘制函数y = e^(-x)的图像得到。这是一条从正无穷趋近于0的单调递减曲线。当x接近无穷时,y趋近于0。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |