什么数的导数是lnx
5个回答
展开全部
x*lnx- x+c的导数是lnx。
这道题实际上就是求lnx的微积分。
解答如下:
∫lnxdx
=x*lnx- ∫xdlnx
=x*lnx- ∫x*(1/x)dx
=x*lnx- ∫dx
=x*lnx- x+c (c为任意常数)
所以:x*lnx- x+c 的导数为lnx。
扩展资料:
积分是线性的。如果一个函数f可积,那么它乘以一个常数后仍然可积。如果函数f和g可积,那么它们的和与差也可积。
如果一个函数f在某个区间上黎曼可积,并且在此区间上大于等于零。那么它在这个区间上的积分也大于等于零。如果f勒贝格可积并且几乎总是大于等于零,那么它的勒贝格积分也大于等于零。
作为推论,如果两个τ上的可积函数f和g相比,f(几乎)总是小于等于g,那么f的(勒贝格)积分也小于等于g的(勒贝格)积分。
常用的积分公式有
(1)f(x)->∫f(x)dx
(2)k->kx
(3)x^n->[1/(n+1)]x^(n+1)
(4)a^x->a^x/lna
(5)sinx->-cosx
(6)cosx->sinx
(7)tanx->-lncosx
(8)cotx->lnsinx
展开全部
x*lnx- x+c的导数是lnx。
这道题实际上就是求lnx的微积分。
解答如下:
∫lnxdx
=x*lnx- ∫xdlnx
=x*lnx- ∫x*(1/x)dx
=x*lnx- ∫dx
=x*lnx- x+c (c为任意常数)
所以:x*lnx- x+c 的导数为lnx。
扩展资料:
积分是线性的。如果一个函数f可积,那么它乘以一个常数后仍然可积。如果函数f和g可积,那么它们的和与差也可积。
如果一个函数f在某个区间上黎曼可积,并且在此区间上大于等于零。那么它在这个区间上的积分也大于等于零。如果f勒贝格可积并且几乎总是大于等于零,那么它的勒贝格积分也大于等于零。
作为推论,如果两个τ上的可积函数f和g相比,f(几乎)总是小于等于g,那么f的(勒贝格)积分也小于等于g的(勒贝格)积分。
常用的积分公式有
(1)f(x)->∫f(x)dx
(2)k->kx
(3)x^n->[1/(n+1)]x^(n+1)
(4)a^x->a^x/lna
(5)sinx->-cosx
(6)cosx->sinx
(7)tanx->-lncosx
(8)cotx->lnsinx
这道题实际上就是求lnx的微积分。
解答如下:
∫lnxdx
=x*lnx- ∫xdlnx
=x*lnx- ∫x*(1/x)dx
=x*lnx- ∫dx
=x*lnx- x+c (c为任意常数)
所以:x*lnx- x+c 的导数为lnx。
扩展资料:
积分是线性的。如果一个函数f可积,那么它乘以一个常数后仍然可积。如果函数f和g可积,那么它们的和与差也可积。
如果一个函数f在某个区间上黎曼可积,并且在此区间上大于等于零。那么它在这个区间上的积分也大于等于零。如果f勒贝格可积并且几乎总是大于等于零,那么它的勒贝格积分也大于等于零。
作为推论,如果两个τ上的可积函数f和g相比,f(几乎)总是小于等于g,那么f的(勒贝格)积分也小于等于g的(勒贝格)积分。
常用的积分公式有
(1)f(x)->∫f(x)dx
(2)k->kx
(3)x^n->[1/(n+1)]x^(n+1)
(4)a^x->a^x/lna
(5)sinx->-cosx
(6)cosx->sinx
(7)tanx->-lncosx
(8)cotx->lnsinx
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
这个需要用不定积分法中的分部积分法解:
设dy/dx = lnx
y = ∫(dy/dx) dx=∫lnx dx
= x*lnx - ∫x d(lnx)
= xlnx - x + C,C为任意常数
∴xlnx - x + C的导数是lnx,这个函数就是曲线族,在未解出常数C之前,lnx的原函数有无限个。
设dy/dx = lnx
y = ∫(dy/dx) dx=∫lnx dx
= x*lnx - ∫x d(lnx)
= xlnx - x + C,C为任意常数
∴xlnx - x + C的导数是lnx,这个函数就是曲线族,在未解出常数C之前,lnx的原函数有无限个。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
实际上就是求lnx的微积分.
解答如下:
∫lnxdx
=x*lnx- ∫xdlnx
=x*lnx- ∫x*(1/x)dx
=x*lnx- ∫dx
=x*lnx- x+c (c为任意常数)
所以:x*lnx- x+c 的导数为lnx.
解答如下:
∫lnxdx
=x*lnx- ∫xdlnx
=x*lnx- ∫x*(1/x)dx
=x*lnx- ∫dx
=x*lnx- x+c (c为任意常数)
所以:x*lnx- x+c 的导数为lnx.
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |