求摆线x=a(t-sint),y=a(1-cost)的一拱与y=0所围图形绕y=2a旋转一周所生成的旋转体的体积?
求摆线x=a(t-sint),y=a(1-cost)的一拱与y=0所围图形绕y=2a旋转一周所生成的旋转体的体积?...
求摆线x=a(t-sint),y=a(1-cost)的一拱与y=0所围图形绕y=2a旋转一周所生成的旋转体的体积?
展开
3个回答
展开全部
用垂直x轴的平面去截这个旋转体,可以得到一个环形的截面,这个环形的面积是:
S=π((2a)²-(2a-y)²)
所以体积微分
dV=Sdx=π(4a²-(2a-a(1-cost))²)d(a(t-sint))
=πa²(3-2cost-cos²t)a(1-cost)dt
积分缺闹旦区间为[0,2π]
所以V=∫[0,2π]πa²弯穗(3-2cost-cos²t)a(1-cost)dt=7π²a³
扩展资料:
把直角坐标系上的函数的图象用平行于y轴的直线把其伏扰分割成无数个矩形,然后把某个区间[a,b]上的矩形累加起来,所得到的就是这个函数的图象在区间[a,b]的面积。
一个定积分式的值,就是原函数在上限的值与原函数在下限的值的差。把一个图形无限细分再累加,这似乎是不可能的事情,但是由于这个理论,可以转化为计算积分。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询