不定积分∫dx/((2x-1)^{1/2}+1)=____
令(2x-1)^{1/2}=t,则x=(t^2+1)/2,dx=tdt∫dx/((2x-1)^{1/2}+1)=∫tdt/(t+1)令t+1=u,则t=u-1,dt=du...
令(2x-1)^{1/2}=t,则x=(t^2+1)/2,dx=tdt
∫dx/((2x-1)^{1/2}+1)
=∫tdt/(t+1)
令t+1=u,则t=u-1,dt=du
∫tdt/(t+1)
=∫(u-1)du/u
=∫du - ∫du/u
=u - ln|u| + C
=(2x-1)^{1/2}+1 - ln|(2x-1)^{1/2}+1| + C
哪里错了? 展开
∫dx/((2x-1)^{1/2}+1)
=∫tdt/(t+1)
令t+1=u,则t=u-1,dt=du
∫tdt/(t+1)
=∫(u-1)du/u
=∫du - ∫du/u
=u - ln|u| + C
=(2x-1)^{1/2}+1 - ln|(2x-1)^{1/2}+1| + C
哪里错了? 展开
2个回答
2017-08-21
展开全部
x=tant,dx=sec²tdt
∫dx/[(2x^2+1)(x^2+1)^(1/2) ]
=∫sec²tdt/[(2tan²t+1)sect]
=∫dt/[cost((2sin²t/cos²t)+1)]
=∫costdt/[((2sin²t+cost²)]
=∫[1/(1+sin²t)]d(sint)
=arctan(sint)+C
三角替换有sint=x/√(1+x²)
所以原不定积分
∫dx/(2x^2+1)(x^2+1)^(1/2)
=arctan[x/√(1+x²)]+C
∫dx/[(2x^2+1)(x^2+1)^(1/2) ]
=∫sec²tdt/[(2tan²t+1)sect]
=∫dt/[cost((2sin²t/cos²t)+1)]
=∫costdt/[((2sin²t+cost²)]
=∫[1/(1+sin²t)]d(sint)
=arctan(sint)+C
三角替换有sint=x/√(1+x²)
所以原不定积分
∫dx/(2x^2+1)(x^2+1)^(1/2)
=arctan[x/√(1+x²)]+C
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询