(a+b)的n次方那个公式是什么?忘记了

(a+b)的n次方那个公式是什么?忘记了在线等... (a+b)的n次方那个公式是什么?忘记了在线等 展开
 我来答
帐号已注销
推荐于2019-08-02 · TA获得超过33.9万个赞
知道小有建树答主
回答量:403
采纳率:0%
帮助的人:15.3万
展开全部

(a+b)n次方=C(n,0)a(n次方)+C(n,1)a(n-1次方)b(1次方)+…+C(n,r)a(n-r次方)b(r次方)+…+C(n,n)b(n次方)(n∈N*)

C(n,0)表示从n个中取0个,这个公式叫做二项式定理,右边的多项式叫做(a+b)n的二次展开式,其中的系数Cnr(r=0,1,……n)叫做二次项系数,式中的Cnran-rbr.叫做二项展开式的通项,用Tr+1表示,即通项为展开式的第r+1项:Tr+1=Cnraa-rbr.

说明 :

①Tr+1=cnraa-rbr是(a+b)n的展开式的第r+1项.r=0,1,2,……n.它和(b+a)n的展开式的第r+1项Cnrbn-rar是有区别的.

②Tr+1仅指(a+b)n这种标准形式而言的,(a-b)n的二项展开式的通项公式是Tr+1=(-1)rCnran-rbr.

③系数Cnr叫做展开式第r+1次的二项式系数,它与第r+1项关于某一个(或几个)字母的系数应区别开来.

特别地,在二项式定理中,如果设a=1,b=x,则得到公式:

(1+x)n=1+cn1x+Cn2x2+…+Cnrxa+…+xn.

扩展资料:

当n为奇数时,由1+2+3+4+...+N与s=N+(N-1)+(N-2)+...+1相加得:

2s=N+[1+(N-1)]+[2+(N-2)]+[3+(N-3)]+...+[(N-1)+(N-N-1)]+N

=N+N+N+...+N加或减去所有添加的二项式展开式数

=(1+N)N减去所有添加的二项式展开式数。

当n为偶数时,由1+2+3+4+5+...+N与s=N+(N-1)+(N-2)+...+1相加得:

2s=N+[1+(N-1)]+[2+(N-2)]+[3+(N-3)]+[4+(N-4)]...+[(N-1)+(N-N-1)]+N

=2N+2[(N-2)+(N-4)+(N-6)+...0或1]加或减去所有添加的二项式展开式数

又当n为偶数时,由1+2+3+4+5+6+...+N与s=N+(N-1)+(N-2)+...+1相加得:

2s=[N+1]+[(N-1)+2]+[(N-2)+3]+...+[(N-N-1)+(N-1)]=2[(N-1)+(N-3)+(N-5)+...0或1]加或减去所有添加的二项式展开式数,合并n为偶数时2S的两个计算结果,可以得到s=N+(N-1)+(N-2)+...+1的计算公式。

其中,所有添加的二项式展开式数,按下列二项式展开式确定,如此可以顺利进行自然数的1至n次幂的求和公式的递进推导,最终可以推导至李善兰自然数幂求和公式。

参考资料:百度百科---二项展开式

参考资料;百度百科---二项式定理

凌月霜丶
2017-09-21 · 知道合伙人教育行家
凌月霜丶
知道合伙人教育行家
采纳数:69934 获赞数:252985
毕业于郧阳师专师范大学

向TA提问 私信TA
展开全部
答:二次项定理
a+b)n次方=C(n,0)a(n次方)+C(n,1)a(n-1次方)b(1次方)+…+C(n,r)a(n-r次方)b(r次方)+…+C(n,n)b(n次方)(n∈N*)
C(n,0)表示从n个中取0个,
这个公式叫做二项式定理,右边的多项式叫做(a+b)n的二次展开式,其中的系数Cnr(r=0,1,……n)叫做二次项系数,式中的Cnran-rbr.叫做二项展开式的通项,用Tr+1表示,即通项为展开式的第r+1项:Tr+1=Cnraa-rbr.
说明 ①Tr+1=cnraa-rbr是(a+b)n的展开式的第r+1项.r=0,1,2,……n.它和(b+a)n的展开式的第r+1项Cnrbn-rar是有区别的.
②Tr+1仅指(a+b)n这种标准形式而言的,(a-b)n的二项展开式的通项公式是Tr+1=(-1)rCnran-rbr.
③系数Cnr叫做展开式第r+1次的二项式系数,它与第r+1项关于某一个(或几个)字母的系数应区别开来.
特别地,在二项式定理中,如果设a=1,b=x,则得到公式:
(1+x)n=1+cn1x+Cn2x2+…+Cnrxa+…+xn.
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
sunhw_nankai
2017-09-21 · TA获得超过1.6万个赞
知道大有可为答主
回答量:5809
采纳率:86%
帮助的人:1127万
展开全部
=a^n + C1*a^(n-1)b + ... + b^n
系数用杨辉三角求
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
伴图j
高粉答主

2020-01-11 · 说的都是干货,快来关注
知道答主
回答量:6.6万
采纳率:5%
帮助的人:3455万
展开全部
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式