1个回答
展开全部
f(x)=∫(1->x^2) e^(-t^2) dt
f'(x) = 2x . e^(-x^4)
----------------------
∫(0->1) xf(x) dx
=(1/2)∫(0->1) f(x) dx^2
=(1/2) [ x^2. f(x) ]|(0->1) -(1/2)∫(0->1) x^2.f'(x) dx
=-(1/2)∫(0->1) x^2.f'(x) dx
=-(1/2)∫(0->1) x^2.[2x . e^(-x^4)] dx
=-∫(0->1) x^3 . e^(-x^4) dx
=(1/4) ∫(0->1) e^(-x^4) d(-x^4)
=(1/4) [ e^(-x^4) ]|(0->1)
=(1/4) [ e^(-1) - 1]
f'(x) = 2x . e^(-x^4)
----------------------
∫(0->1) xf(x) dx
=(1/2)∫(0->1) f(x) dx^2
=(1/2) [ x^2. f(x) ]|(0->1) -(1/2)∫(0->1) x^2.f'(x) dx
=-(1/2)∫(0->1) x^2.f'(x) dx
=-(1/2)∫(0->1) x^2.[2x . e^(-x^4)] dx
=-∫(0->1) x^3 . e^(-x^4) dx
=(1/4) ∫(0->1) e^(-x^4) d(-x^4)
=(1/4) [ e^(-x^4) ]|(0->1)
=(1/4) [ e^(-1) - 1]
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询