高一数学题,
展开全部
(1)
n≥2时,an=2anSn-2Sn²
Sn-S(n-1)=2[Sn-S(n-1)]Sn-2Sn²
S(n-1)-Sn=2SnS(n-1)
等式两边同除以SnS(n-1)
1/Sn -1/S(n-1)=2,为定值
1/S1=1/a1=1/1=1
数列{1/Sn}是以1为首项,2为公差的等差数列
1/Sn=1+2(n-1)=2n-1
Sn=1/(2n-1)
n≥2时,an=Sn-S(n-1)=1/(2n-1)- 1/(2n-3)
n=1时,a1=1/(2-1) -1/(2-3)=1+1=2,而a1=1,不满足表达式
数列{an}的通项公式为
an=1,(n=1)
1/(2n-1)- 1/(2n-3),(n≥2)
(2)
bn=1/Sn=2n-1
Tn=b1+b2+...+bn=1+3+...+(2n-1)=n²
(2Tn+16)/(bn+3)
=(2n²+16)/(2n-1+3)
=(n²+8)/(n+1)
=(n+1) +9/(n+1) -2
由基本不等式得:(n+1)+ 9/(n+1)≥2√[(n+1)·9/(n+1)]=6
当且仅当n=2时取等号,此时(2Tn+16)/(bn+3)=6-2=4
(2Tn+16)/(bn+3)的最小值为4
(3)
(1+S1)(1+S2)...(1+Sn)≥m√(2n+1)
(1+S1)(1+S2)...(1+Sn)/√(2n+1)≥m
1+ Sn=1+ 1/(2n-1)=2n/(2n-1)
(1+S1)(1+S2)...(1+Sn)/√(2n+1)
=(2·1)·(2·2)·...·(2·n)/[1·3·...·(2n-1)√(2n+1)]
=2ⁿ·n!/[1·3·...·(2n-1)√(2n+1)]
[(1+S1)(1+S2)...(1+S(n+1))/√(2(n+1)+1)]/[(1+S1)(1+S2)...(1+Sn)/√(2n+)]
={2ⁿ⁺¹·(n+1)!/[1·3·...·(2n+1)√(2n+3)]}/{2ⁿ·n!/[1·3·...·(2n-1)√(2n+1)]}
=2(n+1)/√[(2n+1)√(2n+3)]
=√(4n²+8n+4)/√(4n²+8n+3)
>1
即:随n增大,(1+S1)(1+S2)...(1+Sn)/√(2n+1)单调递增,n=1时,(1+S1)(1+S2)...(1+Sn)/√(2n+1)取得最小值
[(1+S1)(1+S2)...(1+Sn)/√(2n+1)]min=(1+S1)/√(2·1+1)=(1+1)/√3=2√3/3
要不等式(1+S1)(1+S2)...(1+Sn)/√(2n+1)≥m对于任意正整数n恒成立,只需m≤2√3/3
又m为正数,因此0<m≤2√3/3
m的取值范围为(0,2√3/3]
n≥2时,an=2anSn-2Sn²
Sn-S(n-1)=2[Sn-S(n-1)]Sn-2Sn²
S(n-1)-Sn=2SnS(n-1)
等式两边同除以SnS(n-1)
1/Sn -1/S(n-1)=2,为定值
1/S1=1/a1=1/1=1
数列{1/Sn}是以1为首项,2为公差的等差数列
1/Sn=1+2(n-1)=2n-1
Sn=1/(2n-1)
n≥2时,an=Sn-S(n-1)=1/(2n-1)- 1/(2n-3)
n=1时,a1=1/(2-1) -1/(2-3)=1+1=2,而a1=1,不满足表达式
数列{an}的通项公式为
an=1,(n=1)
1/(2n-1)- 1/(2n-3),(n≥2)
(2)
bn=1/Sn=2n-1
Tn=b1+b2+...+bn=1+3+...+(2n-1)=n²
(2Tn+16)/(bn+3)
=(2n²+16)/(2n-1+3)
=(n²+8)/(n+1)
=(n+1) +9/(n+1) -2
由基本不等式得:(n+1)+ 9/(n+1)≥2√[(n+1)·9/(n+1)]=6
当且仅当n=2时取等号,此时(2Tn+16)/(bn+3)=6-2=4
(2Tn+16)/(bn+3)的最小值为4
(3)
(1+S1)(1+S2)...(1+Sn)≥m√(2n+1)
(1+S1)(1+S2)...(1+Sn)/√(2n+1)≥m
1+ Sn=1+ 1/(2n-1)=2n/(2n-1)
(1+S1)(1+S2)...(1+Sn)/√(2n+1)
=(2·1)·(2·2)·...·(2·n)/[1·3·...·(2n-1)√(2n+1)]
=2ⁿ·n!/[1·3·...·(2n-1)√(2n+1)]
[(1+S1)(1+S2)...(1+S(n+1))/√(2(n+1)+1)]/[(1+S1)(1+S2)...(1+Sn)/√(2n+)]
={2ⁿ⁺¹·(n+1)!/[1·3·...·(2n+1)√(2n+3)]}/{2ⁿ·n!/[1·3·...·(2n-1)√(2n+1)]}
=2(n+1)/√[(2n+1)√(2n+3)]
=√(4n²+8n+4)/√(4n²+8n+3)
>1
即:随n增大,(1+S1)(1+S2)...(1+Sn)/√(2n+1)单调递增,n=1时,(1+S1)(1+S2)...(1+Sn)/√(2n+1)取得最小值
[(1+S1)(1+S2)...(1+Sn)/√(2n+1)]min=(1+S1)/√(2·1+1)=(1+1)/√3=2√3/3
要不等式(1+S1)(1+S2)...(1+Sn)/√(2n+1)≥m对于任意正整数n恒成立,只需m≤2√3/3
又m为正数,因此0<m≤2√3/3
m的取值范围为(0,2√3/3]
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询