2018-05-14
展开全部
这是二元一次方程求解。
由1式得:
a1=13-2n,代入2式得:
n(13-2n)+n²-n=35
13n-2n²+n²-n-35=0
-n²+12n-35=0
(5-n)(n-7)=0
解:n=7或n=5
代入1式得方程的解:
n=7,a1=-1 或 n=5,a1=3
由1式得:
a1=13-2n,代入2式得:
n(13-2n)+n²-n=35
13n-2n²+n²-n-35=0
-n²+12n-35=0
(5-n)(n-7)=0
解:n=7或n=5
代入1式得方程的解:
n=7,a1=-1 或 n=5,a1=3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
将第一式变为 a1=13-2n代入第二式得n(13-2n)+n*n-n=35 整理得n*n-12n+35=0
(n-5)*(n-7)=0 n=5 或n=7 将n的值代入第一式可得 a1=3 或a1=-1
注n*n为n的平方
(n-5)*(n-7)=0 n=5 或n=7 将n的值代入第一式可得 a1=3 或a1=-1
注n*n为n的平方
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询