函数的单调性和奇偶性分别怎么判断?
5个回答
展开全部
一、函数的单调性
根据定义解题:y=f(x)在其定义域内,当x1<x2时,若在某个区间f(x1)<f(x2),则为单调递增;若在某个区间f(x1)>f(x2),则为单调递减!
所以解题时,按如下过程:
1.先求定义域;
2.设x1<x2均属于定义域,然后计算f(x2)-f(x1),最终结果化成几个含有如(x2-x1)等可以判别下负的因式的积;
3.然后根据x1、x2的取值范围分别讨论判断几个因式的积是>0还是<0,从而确定:f(x2)<f(x1),单调减;还是:f(x2)>f(x1),单调增!
4.综合结论!
严格按照上述步骤解题轻车熟路!
二、函数的奇偶性
定义:对于任意x∈R,都有f(-x)=(-x)^2=x^2=f(x).这时我们称函数f(x)=x^2为偶函数;
对于函数f(x)=x的定义域R内任意一个x,都有f(-x)=-f(x),这时我们称函数f(x)=x为奇函数。
解题:判断函数的奇偶性,首先是检验其定义域是否关于原点对称,然后再严格按照奇、偶性的定义经过化简、整理、再与f(x)比较得出结论!
判断或证明函数是否具有奇偶性的根据是定义、变式。
变式:奇:f(x)+f(-x)=0 f(x)*f(-x)=-f^2(x) f(x)/f(-x)=-1
偶:f(x)-f(-x)=0 f(x)*f(-x)=f^2(x) f(x)/f(-x)=1
根据定义解题:y=f(x)在其定义域内,当x1<x2时,若在某个区间f(x1)<f(x2),则为单调递增;若在某个区间f(x1)>f(x2),则为单调递减!
所以解题时,按如下过程:
1.先求定义域;
2.设x1<x2均属于定义域,然后计算f(x2)-f(x1),最终结果化成几个含有如(x2-x1)等可以判别下负的因式的积;
3.然后根据x1、x2的取值范围分别讨论判断几个因式的积是>0还是<0,从而确定:f(x2)<f(x1),单调减;还是:f(x2)>f(x1),单调增!
4.综合结论!
严格按照上述步骤解题轻车熟路!
二、函数的奇偶性
定义:对于任意x∈R,都有f(-x)=(-x)^2=x^2=f(x).这时我们称函数f(x)=x^2为偶函数;
对于函数f(x)=x的定义域R内任意一个x,都有f(-x)=-f(x),这时我们称函数f(x)=x为奇函数。
解题:判断函数的奇偶性,首先是检验其定义域是否关于原点对称,然后再严格按照奇、偶性的定义经过化简、整理、再与f(x)比较得出结论!
判断或证明函数是否具有奇偶性的根据是定义、变式。
变式:奇:f(x)+f(-x)=0 f(x)*f(-x)=-f^2(x) f(x)/f(-x)=-1
偶:f(x)-f(-x)=0 f(x)*f(-x)=f^2(x) f(x)/f(-x)=1
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
最简单的方法使用导数来区别
步骤:
奇偶性:
1.先看定义域是否关于原点对称
2.如果不是关于原点对称,则函数没有奇偶性
3.若定义域关于原点对称
4.则f(-x)=f(x),f(x)是偶函数
5.f(-x)=-f(x),f(x)是奇函数
单调性:
1.先在区间上取两个值,一般都是X1、X2 设X1>X2(或者X1<X2)
2.把X1、X2代进去f(x)解析式做差 也就是f(X1)-f(X2)
3.关化简,化成乘或除的形式
4.若满足 f(X1)-f(X2)>0则是增函数
步骤:
奇偶性:
1.先看定义域是否关于原点对称
2.如果不是关于原点对称,则函数没有奇偶性
3.若定义域关于原点对称
4.则f(-x)=f(x),f(x)是偶函数
5.f(-x)=-f(x),f(x)是奇函数
单调性:
1.先在区间上取两个值,一般都是X1、X2 设X1>X2(或者X1<X2)
2.把X1、X2代进去f(x)解析式做差 也就是f(X1)-f(X2)
3.关化简,化成乘或除的形式
4.若满足 f(X1)-f(X2)>0则是增函数
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
单调性是比较带入两个在定义域中的非特殊值,比较大小,带入值设为AB,A<B则函数fxa<fxb则函数为单调递增fxa>fxb则函数为单调递减
奇偶性主要考察公式fx=f-x则为偶函数fx=-f-x则为奇函数
奇偶性主要考察公式fx=f-x则为偶函数fx=-f-x则为奇函数
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
一、函数的单调性
根据定义解题:y=f(x)在其定义域内,当x1<x2时,若在某个区间f(x1)<f(x2),则为单调递增;若在某个区间f(x1)>f(x2),则为单调递减!
所以解题时,按如下过程:
1.先求定义域;
2.设x1<x2均属于定义域,然后计算f(x2)-f(x1),最终结果化成几个含有如(x2-x1)等可以判别下负的因式的积;
3.然后根据x1、x2的取值范围分别讨论判断几个因式的积是>0还是<0,从而确定:f(x2)<f(x1),单调减;还是:f(x2)>f(x1),单调增!
4.综合结论!
严格按照上述步骤解题轻车熟路!
二、函数的奇偶性
定义:对于任意x∈R,都有f(-x)=(-x)^2=x^2=f(x).这时我们称函数f(x)=x^2为偶函数;
对于函数f(x)=x的定义域R内任意一个x,都有f(-x)=-f(x),这时我们称函数f(x)=x为奇函数。
解题:判断函数的奇偶性,首先是检验其定义域是否关于原点对称,然后再严格按照奇、偶性的定义经过化简、整理、再与f(x)比较得出结论!
判断或证明函数是否具有奇偶性的根据是定义、变式。
变式:奇:f(x)+f(-x)=0
f(x)*f(-x)=-f^2(x)
f(x)/f(-x)=-1
偶:f(x)-f(-x)=0
f(x)*f(-x)=f^2(x)
f(x)/f(-x)=1
根据定义解题:y=f(x)在其定义域内,当x1<x2时,若在某个区间f(x1)<f(x2),则为单调递增;若在某个区间f(x1)>f(x2),则为单调递减!
所以解题时,按如下过程:
1.先求定义域;
2.设x1<x2均属于定义域,然后计算f(x2)-f(x1),最终结果化成几个含有如(x2-x1)等可以判别下负的因式的积;
3.然后根据x1、x2的取值范围分别讨论判断几个因式的积是>0还是<0,从而确定:f(x2)<f(x1),单调减;还是:f(x2)>f(x1),单调增!
4.综合结论!
严格按照上述步骤解题轻车熟路!
二、函数的奇偶性
定义:对于任意x∈R,都有f(-x)=(-x)^2=x^2=f(x).这时我们称函数f(x)=x^2为偶函数;
对于函数f(x)=x的定义域R内任意一个x,都有f(-x)=-f(x),这时我们称函数f(x)=x为奇函数。
解题:判断函数的奇偶性,首先是检验其定义域是否关于原点对称,然后再严格按照奇、偶性的定义经过化简、整理、再与f(x)比较得出结论!
判断或证明函数是否具有奇偶性的根据是定义、变式。
变式:奇:f(x)+f(-x)=0
f(x)*f(-x)=-f^2(x)
f(x)/f(-x)=-1
偶:f(x)-f(-x)=0
f(x)*f(-x)=f^2(x)
f(x)/f(-x)=1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询