若连续函数f(x)满足关系式f(x)=∫x到0f(t)dt+ln5,则f(x)=
展开全部
f(x) =∫(0->x) f(t)dt+ln5
f'(x) = f(x)
let
yp = C
yp' - yp = ln5
-C = ln5
C=-ln5
f(x) = Ae^x -ln5
f(0) = ln5
ln5 = A - ln5
A=2ln5
ie
f(x)= 2(ln5).e^x -ln5
f'(x) = f(x)
let
yp = C
yp' - yp = ln5
-C = ln5
C=-ln5
f(x) = Ae^x -ln5
f(0) = ln5
ln5 = A - ln5
A=2ln5
ie
f(x)= 2(ln5).e^x -ln5
更多追问追答
追问
??
追答
f(x) =∫(0->x) f(t)dt+ln5
f(0) = ln5
----------------
f(x) =∫(0->x) f(t)dt+ln5
两边取导
f'(x) = f(x)
∫df(x)/f(x) = ∫ dx
ln|f(x)| = x + C
C= lnln5
ln|f(x)| = x + lnln5
f(x) = e^(x + lnln5)
= ln5.e^x
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询