有理函数的积分问题,被积有理函数如何拆分?
有理函数的积分
1、比如 1/(x-2)(x+4) A/x-2+B/x+4那么 1/(x²+1)(x²+x+1) 拆分:
拆成 (Ax+B)/(x²+1)+(Cx+d)/(x²+x+1)=1
还是拆成 A/(x²+1)+(Bx+c)/(x²+x+1)=1
2、如果是这三道题 你帮我写成分解因式的形式
写成 A/(X²+1)+B/(X+1) 这种
∫(x+1)²/(x²+1)² dx
∫dx/(x²+1)(x²+x+1)
∫(-x²-2)/(x²+x+1)² dx
扩展资料:
有理函数是通过多项式的加减乘除得到的函数。
在数学中,理性函数是可以由有理分数定义的任何函数,即代数分数,使得分子和分母都是多项式。 多项式的系数不需要是有理数,它们可以在任何字段K中进行。变量的情况可以在包含K的任何字段L中进行。函数的域是变量,分母不为零,代码区为L。
一个有理函数h可以写成如下形式:h=f/g,这里 f 和 g 都是多项式函数。有理函数是特殊的亚纯函数, 它的零点和极点个数有限。
有理函数全体构成所谓的有理函数域。
在实数范围内,无限不循环的小数叫做无理数,一般通过开平方得到。在二次函数里面,如 y=a*x^2+b*x+c,如果△≥0,那么 y=0 有实数解;如果△<0,那么 y=0 没有实数解,但有虚数解。
参考资料来源:百度百科-有理函数
有理函数的积分
有理函数的积分 到底哪个参数是怎么弄的?
比如 1/(x-2)(x+4) A/x-2+B/x+4那么 1/(x²+1)(x²+x+1) 这个怎么拆?
拆成 (Ax+B)/(x²+1)+(Cx+d)/(x²+x+1)=1
还是拆成 A/(x²+1)+(Bx+c)/(x²+x+1)=1
如果分子最高次数是2 分母是4 而且不能化简 是让=分子吗?
如果是这三道题 你帮我写成分解因式的形式
写成 A/(X²+1)+B/(X+1) 这种
∫(x+1)²/(x²+1)² dx
∫dx/(x²+1)(x²+x+1)
∫(-x²-2)/(x²+x+1)² dx