∫1/(x+1)(x+2)(x+3)dx

求步骤... 求步骤 展开
 我来答
教育小百科达人
2019-03-23 · TA获得超过156万个赞
知道大有可为答主
回答量:8828
采纳率:99%
帮助的人:465万
展开全部

∫1/(x+1)(x+2)(x+3)dx

=∫1/[2(x+1)]-x/(x+2)-x/[2(x+3)]dx

=1/2∫1/(x+1)dx-∫1/(x+2)dx+1/2∫1/(x+3)dx

=1/2(1-ln|x+1|)-(1-2ln|x+2|)+1/2(1-3ln|x+3|)+C

=-1/2ln|x+1|+2ln|x+2|-3/2ln|x+3|+C

定积分和定积分间的关系由微积分基本定理确定。其中F是f的不定积分。

扩展资料:

一个函数,可以存在不定积分,而不存在定积分;也可以存在定积分,而不存在不定积分。一个连续函数,一定存在定积分和不定积分;若只有有限个间断点,则定积分存在;若有跳跃间断点,则原函数一定不存在,即不定积分一定不存在。

设f(x)在区间[a,b]上连续,则f(x)在[a,b]上可积。设f(x)区间[a,b]上有界,且只有有限个间断点,则f(x)在[a,b]上可积。设f(x)在区间[a,b]上单调,则f(x)在[a,b]上可积。

求函数f(x)的不定积分,就是要求出f(x)的所有的原函数,由原函数的性质可知,只要求出函数f(x)的一个原函数,再加上任意的常数C就得到函数f(x)的不定积分。

参考资料来源:百度百科——不定积分

笨蛋X3
2018-04-25 · TA获得超过109个赞
知道小有建树答主
回答量:134
采纳率:100%
帮助的人:39.3万
展开全部
(1)首先解出分项分式 ︰A/(x+1)+B/(x+2)+C/(x+3)=1/((x+1)(x+2)(x+3))
A(x+2)(x+3)+B(x+1)(x+3)+C(x+1)(x+2)=1
当x=-1,A(1)(2)+0+0=1 ->A=1/2
当x=-2,0+B(-1)(1)+0=1 ->B=-1
当x=-3,0+0+C(-2)(-1)=1 ->C=1/2
得出1/((x+1)(x+2)(x+3))=(1/2)/(x+1)+(-1)/(x+2)+(1/2)/( x+3)
(2)当k和b是任意常数时,∫k/(x+b) dx=k*ln|x+b|+C
∫1/((x+1)(x+2)(x+3))=∫[(1/2)/(x+1)+(-1)/(x+2)+(1/ 2)/(x+3)] dx
=∫(1/2)/(x+1)dx+∫(-1)/(x+2)dx+∫(1/2)/(x+3)dx
=1/2*ln|x+1|-ln|x+2|+1/2*ln|x+3|+C,C 是常数
=ln|√((x+1)*(x+3))/(x+2)|+C,C是常数
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2018-06-10
引用笨蛋X3的回答:
(1)首先解出分项分式 ︰A/(x+1)+B/(x+2)+C/(x+3)=1/((x+1)(x+2)(x+3))
A(x+2)(x+3)+B(x+1)(x+3)+C(x+1)(x+2)=1
当x=-1,A(1)(2)+0+0=1 ->A=1/2
当x=-2,0+B(-1)(1)+0=1 ->B=-1
当x=-3,0+0+C(-2)(-1)=1 ->C=1/2
得出1/((x+1)(x+2)(x+3))=(1/2)/(x+1)+(-1)/(x+2)+(1/2)/( x+3)
(2)当k和b是任意常数时,∫k/(x+b) dx=k*ln|x+b|+C
∫1/((x+1)(x+2)(x+3))=∫[(1/2)/(x+1)+(-1)/(x+2)+(1/ 2)/(x+3)] dx
=∫(1/2)/(x+1)dx+∫(-1)/(x+2)dx+∫(1/2)/(x+3)dx
=1/2*ln|x+1|-ln|x+2|+1/2*ln|x+3|+C,C 是常数
=ln|√((x+1)*(x+3))/(x+2)|+C,C是常数
展开全部
你这样做得话,最后一步答案应该是 ln|√|(x+1)*(x+3)|/(x+2)|+C,C是常数
根号下应该是绝对值符号
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式