展开全部
∫xsinx/cos³xdx
因为:(1/cosx)'=(sinx/cos²x)
原式=∫x/cosxd(1/cosx) 分部积分
=x/cos²x-∫1/cosxd(x/cosx)
=x/cos²x-∫1/cosx*(cosx+xsinx/cos²x)dx
=x/cos²x-∫1/cos²xdx-∫xsinx/cos³xdx
令∫xsinx/cos³xdx=F
则F=x/cos²x-∫1/cos²xdx-F
2F=x/cos²x-∫1/cos²xdx=x/cos²x-∫sec²xdx
=x/cos²x-tanx+C
故原积分=(x/cos²x-tanx)/2+C
因为:(1/cosx)'=(sinx/cos²x)
原式=∫x/cosxd(1/cosx) 分部积分
=x/cos²x-∫1/cosxd(x/cosx)
=x/cos²x-∫1/cosx*(cosx+xsinx/cos²x)dx
=x/cos²x-∫1/cos²xdx-∫xsinx/cos³xdx
令∫xsinx/cos³xdx=F
则F=x/cos²x-∫1/cos²xdx-F
2F=x/cos²x-∫1/cos²xdx=x/cos²x-∫sec²xdx
=x/cos²x-tanx+C
故原积分=(x/cos²x-tanx)/2+C
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询