求所有与矩阵A可交换的矩阵
展开全部
直接用待定系数法
B=
a b
c d
然后代入AB=BA可以算出a=d, c=0, 这是充要的,所以所有与A可交换的矩阵恰好有如下形式
B=
a b
0 a
与A可交换的矩阵是3阶方阵,设B=(bij)与A可交换,则AB=BA,比较两边对应元素的:b11=b22=b33,b12=b23,b21=b31=b32=0,所以与A可交换的矩阵是如下形式的矩阵:a b c0 a b0 0 a其中a,b,c是任意实数。
扩展资料:
由 m × n 个数aij排成的m行n列的数表称为m行n列的矩阵,简称m × n矩阵。
这m×n 个数称为矩阵A的元素,简称为元,数aij位于矩阵A的第i行第j列,称为矩阵A的(i,j)元,以数 aij为(i,j)元的矩阵可记为(aij)或(aij)m × n,m×n矩阵A也记作Amn。
元素是实数的矩阵称为实矩阵,元素是复数的矩阵称为复矩阵。而行数与列数都等于n的矩阵称为n阶矩阵或n阶方阵。
参考资料来源:百度百科-矩阵
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询