4个回答
展开全部
let
(x^2+1)/[x(x^3-1)] ≡ A/x + B/(x-1) + (Cx+D)/(x^2+x+1)
=>
x^2+1 ≡ A(x^3-1) + Bx.(x^2+x+1) + (Cx+D)x(x-1)
x=0, => A = -1
x=1, => B = 2/3
coef. of x^3
A+B+C =0
-1+2/3 +C =0
C=1/3
coef. of x^2
B -C +D=1
2/3 -1/3 +D =1
D= 2/3
ie
(x^2+1)/[x(x^3-1)] ≡ -1/x + (2/3)[1/(x-1)] + (1/3)[(x+2)/(x^2+x+1) ]
∫(x^2+1)/[x(x^3-1)] dx
= ∫ { -1/x + (2/3)[1/(x-1)] + (1/3)[(x+2)/(x^2+x+1) ] }dx
=-ln|x| +(2/3)ln|x-1| +(1/3)∫ [(x+2)/(x^2+x+1) ] dx
=-ln|x| +(2/3)ln|x-1| +(1/6)∫[(2x+1)/(x^2+x+1) ] dx -(1/6)∫dx/(x^2+x+1)
=-ln|x| +(2/3)ln|x-1| +(1/6)ln|x^2+x+1| -(1/6)∫dx/(x^2+x+1)
=-ln|x| +(2/3)ln|x-1| +(1/6)ln|x^2+x+1| -(√3/9).arctan[( 2x+1)√3] + C
consider
x^2+x+1 = (x+1/2)^2 + 3/4
let
x+ 1/2 = (√3/2) tanu
dx = (√3/2) (secu)^2 du
∫dx/(x^2+x+1)
=∫ (√3/2) (secu)^2 du/[ (3/4)(secu)^2 ]
=(2√3/3) ∫ du
=(2√3/3)u + C
=(2√3/3)arctan[( 2x+1)√3] + C
(x^2+1)/[x(x^3-1)] ≡ A/x + B/(x-1) + (Cx+D)/(x^2+x+1)
=>
x^2+1 ≡ A(x^3-1) + Bx.(x^2+x+1) + (Cx+D)x(x-1)
x=0, => A = -1
x=1, => B = 2/3
coef. of x^3
A+B+C =0
-1+2/3 +C =0
C=1/3
coef. of x^2
B -C +D=1
2/3 -1/3 +D =1
D= 2/3
ie
(x^2+1)/[x(x^3-1)] ≡ -1/x + (2/3)[1/(x-1)] + (1/3)[(x+2)/(x^2+x+1) ]
∫(x^2+1)/[x(x^3-1)] dx
= ∫ { -1/x + (2/3)[1/(x-1)] + (1/3)[(x+2)/(x^2+x+1) ] }dx
=-ln|x| +(2/3)ln|x-1| +(1/3)∫ [(x+2)/(x^2+x+1) ] dx
=-ln|x| +(2/3)ln|x-1| +(1/6)∫[(2x+1)/(x^2+x+1) ] dx -(1/6)∫dx/(x^2+x+1)
=-ln|x| +(2/3)ln|x-1| +(1/6)ln|x^2+x+1| -(1/6)∫dx/(x^2+x+1)
=-ln|x| +(2/3)ln|x-1| +(1/6)ln|x^2+x+1| -(√3/9).arctan[( 2x+1)√3] + C
consider
x^2+x+1 = (x+1/2)^2 + 3/4
let
x+ 1/2 = (√3/2) tanu
dx = (√3/2) (secu)^2 du
∫dx/(x^2+x+1)
=∫ (√3/2) (secu)^2 du/[ (3/4)(secu)^2 ]
=(2√3/3) ∫ du
=(2√3/3)u + C
=(2√3/3)arctan[( 2x+1)√3] + C
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询