不定积分 ∫1/(1+e^x)dx解法?

 我来答
数码宝贝7Q
2021-07-04 · TA获得超过5447个赞
知道小有建树答主
回答量:1044
采纳率:100%
帮助的人:20万
展开全部

不定积分 ∫1/(1+e^x)dx解法如下:

 ∫1/(1+e^x)dx

=∫e^(-x)/(1+e^(-x))dx

=-∫1/(1+e^(-x))d(1+e^(-x))

=-ln(1+e^(-x))+C

=-ln((1+e^x)/e^x)+C

=x-ln(1+e^x)+C 

不可积函数

虽然很多函数都可通过如上的各种手段计算其不定积分,但这并不意味着所有的函数的原函数都可以表示成初等函数的有限次复合,原函数不可以表示成初等函数的有限次复合的函数称为不可积函数。利用微分代数中的微分Galois理论可以证明,如xx ,sinx/x这样的函数是不可积的。

教育小百科达人
2020-11-17 · TA获得超过156万个赞
知道大有可为答主
回答量:8828
采纳率:99%
帮助的人:481万
展开全部

回答如下:

 ∫1/(1+e^daox)dx

=∫e^(-x)/(1+e^dao(-x))dx

=-∫1/(1+e^(-x))d(1+e^(-x))

=-ln(1+e^(-x))+C

=-ln((1+e^x)/e^x)+C

=x-ln(1+e^x)+C 

扩展资料:

求函数f(x)的不定积分,就是要求出f(x)的所有的原函数,由原函数的性质可知,只要求出函数f(x)的一个原函数,再加上任意的常数C就得到函数f(x)的不定积分。

由此可知,如果F(x)是f(x)在区间I上的一个原函数,那么F(x)+C就是f(x)的不定积分,即∫f(x)dx=F(x)+C。因而不定积分∫f(x) dx可以表示f(x)的任意一个原函数。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
西域牛仔王4672747
2019-04-23 · 知道合伙人教育行家
西域牛仔王4672747
知道合伙人教育行家
采纳数:30596 获赞数:146336
毕业于河南师范大学计算数学专业,学士学位, 初、高中任教26年,发表论文8篇。

向TA提问 私信TA
展开全部
1/(1+e^x) = [(1+e^x) - e^x] / (1+e^x) = 1 - e^x / (1+e^x),
因此原不定积分 = x - ln(1+e^x) + C 。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
茹翊神谕者

2020-10-20 · TA获得超过2.5万个赞
知道大有可为答主
回答量:3.6万
采纳率:76%
帮助的人:1680万
展开全部

详情如图所示

有任何疑惑,欢迎追问

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式