2个回答
展开全部
(6)解:∵2yy"=y'²+y² ==>2yy'dy'/dy=y'²+y² (y"=y'dy'/dy)
==>2yy'dy'-y'²dy=y²dy ==>2y'dy'/y-y'²dy/y²=dy (等式两端同除y²)
==>d(y'²/y)=dy ==>y'²/y=y +C1 (C1是积分常数)
==>C1=0 (∵y(0)=1,y'(0)=-1)
∴y'²/y=y ==>y'=±y ==>dy/y=±dx
==>ln∣y∣=±x+ln∣C2∣ (C2是积分常数)
==>y=C2e^(±x) ==>C2=1 (∵y(0)=1)
==>y=e^(±x)
故 所求满足初始条件y(0)=1,y'(0)=-1的特解是y=e^(±x)。
==>2yy'dy'-y'²dy=y²dy ==>2y'dy'/y-y'²dy/y²=dy (等式两端同除y²)
==>d(y'²/y)=dy ==>y'²/y=y +C1 (C1是积分常数)
==>C1=0 (∵y(0)=1,y'(0)=-1)
∴y'²/y=y ==>y'=±y ==>dy/y=±dx
==>ln∣y∣=±x+ln∣C2∣ (C2是积分常数)
==>y=C2e^(±x) ==>C2=1 (∵y(0)=1)
==>y=e^(±x)
故 所求满足初始条件y(0)=1,y'(0)=-1的特解是y=e^(±x)。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询