计算n阶行列式Dn=|aij|,其中aij=|i-j|
3个回答
展开全部
以数字1,2,…,n为(大部分)元素,且相邻两行(列)元素相差1的n阶行列式可如下计算:自第1行(列)开始,前行(列)减去后行(列);或自第n行(列)开始,后行(列)减去前行(列),即可出现大量元素为1或一l的行列式。
rn-r(n-1),r(n-1)-r(n-2),…,r2-r1
0 1 2 … n-2 n-1
1 -1 -1 … -1 -1
1 1 1 … 1 -1
c1+cn,c2+cn,…,c(n-1)+cn
n-1 n n+1 … 2n-3 n-1
0 -2 -2 … -2 -1
0 0 0 … 0 -1
=(n-1)(-1)^(n-1)2^(n-2)
性质
①行列式A中某行(或列)用同一数k乘,其结果等于kA。
②行列式A等于其转置行列式AT(AT的第i行为A的第i列)。
③若n阶行列式|αij|中某行(或列);行列式则|αij|是两个行列式的和,这两个行列式的第i行(或列),一个是b1,b2,…,bn;另一个是с1,с2,…,сn;其余各行(或列)上的元与|αij|的完全一样。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询