这道高数题,怎么做?
2个回答
展开全部
(4)
let
u=√x
2udu = dx
x=0, u=0
x=1, u=1
∫(0->1) arccos[ 1/√(1+x)] dx
=[x.arccos[ 1/√(1+x)] ]|(0->1) + ∫(0->1) { x/√ [1- 1/(1+x)] }[ (-1/2) (1+x)^(-3/2) } dx
=π/4 - (1/2)∫(0->1) √x/(1+x) dx
=π/4 - (1/2)∫(0->1) [u/(1+u^2) ][ 2udu]
=π/4 -∫(0->1) u^2/(1+u^2) du
=π/4 -∫(0->1) [1 - 1/(1+u^2) du
=π/4 - [u -arctanu]|(0->1)
=π/4 - (1 -π/4)
=π/2 -1
let
u=√x
2udu = dx
x=0, u=0
x=1, u=1
∫(0->1) arccos[ 1/√(1+x)] dx
=[x.arccos[ 1/√(1+x)] ]|(0->1) + ∫(0->1) { x/√ [1- 1/(1+x)] }[ (-1/2) (1+x)^(-3/2) } dx
=π/4 - (1/2)∫(0->1) √x/(1+x) dx
=π/4 - (1/2)∫(0->1) [u/(1+u^2) ][ 2udu]
=π/4 -∫(0->1) u^2/(1+u^2) du
=π/4 -∫(0->1) [1 - 1/(1+u^2) du
=π/4 - [u -arctanu]|(0->1)
=π/4 - (1 -π/4)
=π/2 -1
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询