
求下列微分方程的通解 yy''+(y')³=0 5
2个回答
展开全部
设 y' = p, y'' = dp/dx = (dp/dy(dy/dx) = pdp/dy
ypdp/dy = -p^3
p = 0 , ydp/dy = -p^2
-dp/p^2 = dy/y, 1/p = lny+lnC1 = ln(C1y)
p = dy/dx = 1/ln(C1y), ∫ln(C1y)dy = ∫dx,
yln(C1y) - ∫[yC1/(C1y)]dy = ∫dx
y[ln(C1y)-1] = x+ C2
ypdp/dy = -p^3
p = 0 , ydp/dy = -p^2
-dp/p^2 = dy/y, 1/p = lny+lnC1 = ln(C1y)
p = dy/dx = 1/ln(C1y), ∫ln(C1y)dy = ∫dx,
yln(C1y) - ∫[yC1/(C1y)]dy = ∫dx
y[ln(C1y)-1] = x+ C2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询