这道题是怎么通过因式分解得到下面这个式子的?
展开全部
y
=1/(x^2-1)
=1/[(x-1)(x+1)]
=(1/2)[ 1/(x-1) - 1/(x+1)]
y^(n)
=(1/2) (-1)^n . n! .[ 1/(x-1)^(n+1) - 1/(x+1)^(n+1) ]
=1/(x^2-1)
=1/[(x-1)(x+1)]
=(1/2)[ 1/(x-1) - 1/(x+1)]
y^(n)
=(1/2) (-1)^n . n! .[ 1/(x-1)^(n+1) - 1/(x+1)^(n+1) ]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2019-12-16
展开全部
1/(x²-1)
=1/(x-1)(x+1)
=1/2【(x+1)-(x-1)】/(x-1)(x+1)
=1/2(x+1)/(x-1)(x+1) -1/2(x-1)/(x-1)(x+1)
=1/2【1/(x-1)-1/(x+1)】
=1/(x-1)(x+1)
=1/2【(x+1)-(x-1)】/(x-1)(x+1)
=1/2(x+1)/(x-1)(x+1) -1/2(x-1)/(x-1)(x+1)
=1/2【1/(x-1)-1/(x+1)】
追问
这个有公式嘛
追答
1/n(n+1) =1/n-1/(n+1)
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询