【如图】这四道求不定积分的题目怎么用分部积分法求出来?
展开全部
(1)
∫ln(x^2+1) dx
=xln(x^2+1) - 2∫x^2/(x^2+1) dx
=xln(x^2+1) - 2∫[ 1-1/(x^2+1)] dx
=xln(x^2+1) - 2x +2arctanx +C
(2)
∫ln(lnx)/x dx
=∫ln(lnx) dlnx
=lnx .ln(lnx) - ∫ dx/x
=lnx .ln(lnx) - ln|x| +C
(3)
∫x/(cosx)^2 dx
=∫x(secx)^2 dx
=∫x dtanx
=xtanx - ∫tanx dx
=xtanx + ln|cosx| +C
(4)
∫(1/x^3) e^(1/x) dx
=-∫(1/x) de^(1/x)
=-(1/x)e^(1/x) -∫(1/x^2) e^(1/x) dx
=-(1/x)e^(1/x) + e^(1/x) +C
∫ln(x^2+1) dx
=xln(x^2+1) - 2∫x^2/(x^2+1) dx
=xln(x^2+1) - 2∫[ 1-1/(x^2+1)] dx
=xln(x^2+1) - 2x +2arctanx +C
(2)
∫ln(lnx)/x dx
=∫ln(lnx) dlnx
=lnx .ln(lnx) - ∫ dx/x
=lnx .ln(lnx) - ln|x| +C
(3)
∫x/(cosx)^2 dx
=∫x(secx)^2 dx
=∫x dtanx
=xtanx - ∫tanx dx
=xtanx + ln|cosx| +C
(4)
∫(1/x^3) e^(1/x) dx
=-∫(1/x) de^(1/x)
=-(1/x)e^(1/x) -∫(1/x^2) e^(1/x) dx
=-(1/x)e^(1/x) + e^(1/x) +C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
瑞达小美
2024-11-27 广告
2024-11-27 广告
法考分为主观题与客观题。课程针对应试,精准学习。导学、精讲、真金题、冲刺各阶段相辅相成,直击考点。瑞达法考APP一站式学习,碎片时间也能充分利用。2016年瑞达教育正式成立,总部位于北京市,在北京、天津、上海、广州、深圳、南京、杭州、海口设...
点击进入详情页
本回答由瑞达小美提供
展开全部
1. ∫ ln(x² + 1) dx
= xln(x² + 1) - ∫ x dln(x² + 1)
= xln(x² + 1) - ∫ x · (2x)/(x² + 1) dx
= xln(x² + 1) - 2∫ x²/(x² + 1) dx
= xln(x² + 1) - 2∫ [(x² + 1) - 1]/(x² + 1) dx
= xln(x² + 1) - 2∫ [1 - 1/(x² + 1)] dx
= xln(x² + 1) - 2(x - arctan(x)) + C
= xln(x² + 1) - 2x + 2arctan(x) + C
= xln(x² + 1) - ∫ x dln(x² + 1)
= xln(x² + 1) - ∫ x · (2x)/(x² + 1) dx
= xln(x² + 1) - 2∫ x²/(x² + 1) dx
= xln(x² + 1) - 2∫ [(x² + 1) - 1]/(x² + 1) dx
= xln(x² + 1) - 2∫ [1 - 1/(x² + 1)] dx
= xln(x² + 1) - 2(x - arctan(x)) + C
= xln(x² + 1) - 2x + 2arctan(x) + C
更多追问追答
3. ∫ (x/cos²x) dx
= ∫ x dtanx
= x tanx - ∫ tanx dx + c
= x tanx + ∫ (dcosx)/cosx + c
= x tanx + ln |cosx| + c
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询