反常积分的收敛与发散
展开全部
当q=1时,原式=∫(a,b)dx/(x-a)=ln丨x-a丨丨(x=a,b)=ln丨b-a丨-lim(x→a)ln丨x-a丨→∞,发散。
当q≠1时,原式=∫(a,b)dx/(x-a)^q=[1/(1-q)](x-a)^(1-q)丨(x=a,b)=[1/(1-q)]{(b-a)^(1-q)-lim(x→a)(x-a)^(1-q)}。
①当0<q<1时,0<1-q<1,lim(x→a)(x-a)^(1-q)=0,∴原式=∫(a,b)dx/(x-a)^q=[1/(1-q)](b-a)^(1-q)。收敛。
②当q>1时,1-q<0,lim(x→a)(x-a)^(1-q)→∞,发散。
故,综上所述,0<q<1时,积分收敛,其值为[1/(1-q)](b-a)^(1-q);q≥1时,积分发散。
供参考。
当q≠1时,原式=∫(a,b)dx/(x-a)^q=[1/(1-q)](x-a)^(1-q)丨(x=a,b)=[1/(1-q)]{(b-a)^(1-q)-lim(x→a)(x-a)^(1-q)}。
①当0<q<1时,0<1-q<1,lim(x→a)(x-a)^(1-q)=0,∴原式=∫(a,b)dx/(x-a)^q=[1/(1-q)](b-a)^(1-q)。收敛。
②当q>1时,1-q<0,lim(x→a)(x-a)^(1-q)→∞,发散。
故,综上所述,0<q<1时,积分收敛,其值为[1/(1-q)](b-a)^(1-q);q≥1时,积分发散。
供参考。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询