展开全部
f(x) = ∫<0, 2π>e^(sint)sintdt, 则 f(x) 是常数。
f(x) = ∫<0, π>e^(sint)sintdt + ∫<π,2π>e^(sint)sintdt
后者 令 u = t - π, 则 sint = sin(u+π) = -sinu
I = ∫<π,2π>e^(sint)sintdt
= ∫<0,π>e^(-sinu)(-sinu)du 定积分与积分变量无关
= -∫<0,π>e^(-sint)sintdt
f(x) = ∫<0, π>[e^(sint)-e^(-sint)]sintdt
在 (0, π) 内, sint > 0, e^(sint)-e^(-sint) > 0, 则 f(x) 是正常数。
f(x) = ∫<0, π>e^(sint)sintdt + ∫<π,2π>e^(sint)sintdt
后者 令 u = t - π, 则 sint = sin(u+π) = -sinu
I = ∫<π,2π>e^(sint)sintdt
= ∫<0,π>e^(-sinu)(-sinu)du 定积分与积分变量无关
= -∫<0,π>e^(-sint)sintdt
f(x) = ∫<0, π>[e^(sint)-e^(-sint)]sintdt
在 (0, π) 内, sint > 0, e^(sint)-e^(-sint) > 0, 则 f(x) 是正常数。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询