求极限 具体过程
x->0
分母
tanx= x+(1/3)x^3+o(x^3)
sinx= x-(1/6)x^3+o(x^3)
tanx -sinx = (1/2)x^3 +o(x^3)
分子
tanx =x+(1/3)x^3+o(x^3)
tan(tanx)
=tan[x+(1/3)x^3+o(x^3)]
= [x+(1/3)x^3] +(1/3)[x+(1/3)x^3]^3 +o(x^3)
= [x+(1/3)x^3] +(1/3)[x^3+o(x^3)] +o(x^3)
=x +(2/3)x^3 +o(x^3)
sinx = x-(1/6)x^3+o(x^3)
sin(sinx)
=sin[ x-(1/6)x^3+o(x^3)]
= [ x-(1/6)x^3] -(1/6) [ x-(1/6)x^3] ^3 +o(x^3)
= [ x-(1/6)x^3] -(1/6) [ x^3+o(x^3)] +o(x^3)
=x-(1/3)x^3 +o(x^3)
tan(tanx)- sin(sinx)
=[x +(2/3)x^3 +o(x^3)] -[x-(1/3)x^3 +o(x^3)]
= x^3 +o(x^3)
lim(x->0) [tan(tanx) -sin(sinx)]/(tanx-sinx)
=lim(x->0) x^3/[(1/2)x^3]
=2