
∫sec^3(x)/tan²xdx怎么算?
展开全部
先对不定积分进行变形,得到:
∫sec^3(x)/tan²xdx
=∫[1/cos^3(x)]/[sin^2x/cos^2x]dx
=∫[1/cos(x)]/[sin^2x]dx
=∫1/[cos(x)*sin^2x]dx
=∫dsinx/[cos^2(x)*sin^2x]
=∫dsinx/[(1-sin^2(x))*sin^2x]
=∫dsinx/[(1-sin^2(x)]+∫dsinx/(sin^2(x))
=(1/2)ln[(1+sinx)/(1-sinx)]-(1/sinx)+c
∫sec^3(x)/tan²xdx
=∫[1/cos^3(x)]/[sin^2x/cos^2x]dx
=∫[1/cos(x)]/[sin^2x]dx
=∫1/[cos(x)*sin^2x]dx
=∫dsinx/[cos^2(x)*sin^2x]
=∫dsinx/[(1-sin^2(x))*sin^2x]
=∫dsinx/[(1-sin^2(x)]+∫dsinx/(sin^2(x))
=(1/2)ln[(1+sinx)/(1-sinx)]-(1/sinx)+c
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询