设a+b+c=0,abc>0则(b+c)/|a|+(c+a)/|b|+(a+b)/|c|的值是

 我来答
周盼满慈
2019-03-15 · TA获得超过3924个赞
知道小有建树答主
回答量:3176
采纳率:33%
帮助的人:281万
展开全部
a+b+c=0
a+b=-c
c+a=-b
b+c=-a
原式=-a/|a|-b/|b|-c/|c|
abc>0
所以是三个正数或二负一正
若是三个正数
则绝对值等于自身
所以原式=-a/a-b/b-c/c=-1-1-1=-3
若是二负一正
则不妨设a<0,b<0,c>0
则|a|=-a
|b|=-b
|c|=c
所以原式=-a/(-a)-b/(-b)-c/c
=1+1-1
=1
所以原式=-3或1
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式