如图,已知二次函数图像的顶点坐标为C(1,0),直线Y=x+m与该二次函数的图像交于A,B两

 我来答
独晴霞嬴半
2019-06-15 · TA获得超过3万个赞
知道大有可为答主
回答量:1.1万
采纳率:33%
帮助的人:580万
展开全部
解:(1)由题意,A(3,4)、B(0,m)既在直线上,又在抛物线上(由于编辑问题,     X2表示X的平方)
     设抛物线Y=aX2+bX+m(a>0)
     将A(3,4)带入Y=X+m,即:4=3+m;得出:m=1
     所以,Y=aX2+bX+1
     将A(3,4)带入Y=aX2+bX+1 
     得出:9a+3b=3   --①
     因为抛物线的顶点为C(1,0),所以,a+b+1=0   --②
     由①②式,得:a=1  b=-2
     所以,抛物线方程:Y=X2-2X+1
(2)思路:求出A、B两点距离,然后求出E点到直线AB的距离,因为AB坐标已求出,A,B的距离为定值,那么求三角形的面积最大值,就是求E点到AB的最远距离,观察图形知道,当抛物线的切线与直线平行时,E点到AB的距离最远。即:此时切线的斜率等于直线的斜率相等,对抛物线求导,可得,Y=2X-2
   令2X-2=1,推出:X=1.5
    即:n=1.5
   就是说,n=1.5,S有最大值
   此时E点坐标:(1.5,0.25)
   A(3,4)、B(0,1)间距离:d=……=3倍根号2=4.242
   E到AB的距离,根据点到直线的距离,h=1.15
   S最大=1/2×4.242×1.15=2.4375
PS:这道题的第一问,相对简单一点,
   第二问,我用到了大学里高等数学中的求导知识,算起来比较简便。
   第二问,也可以先求出AB两点间的距离,然后运用点到直线(AB)的公式,把E点到Y=x+1的距离表达出来,然后求表达式关于n的最大值,虽然费事一点也可以得出结果。
   希望对你有帮助,如还需要交流,欢迎追问。
麦秀丽礼爽
2019-06-10 · TA获得超过3万个赞
知道大有可为答主
回答量:1.1万
采纳率:25%
帮助的人:626万
展开全部
(1)
1、这个抛物线肯定是开口向上的塞,即顶点1、0,又有过3,4,一画就知道。
2、直线过A点,则4=3+m,于是m=1;
3、B点,则为x=0,y=x+1=1;
4、于是我们有了二次函数的三个点,顶点(1,0),(3,4),(0,1)
y=k*(x-c)^2+d
c=1;k+d=1;4=k*(3-1)^2+d;
k=1;d=0;
y=(x-1)^2——二次函数关系。
(2)E点就在AB之间。最大值肯定是有的。三角形的底为AB,保持不变。E点改变高。
我们就是求这个高的最大值。
E
(n,m),
过E点且与直线y=x+1垂直的直线记为:y=-x+e;(由于AB点之间,e在1~7之间)
两条直线的交点:x=0.5*(e-1);y=0.5*(e+1);
有以下关系:
m=-n+e
m=(n-1)^2
e=(n-1)^2+n=n^2-n+1
我们就是求
(n-0.5*(e-1))^2+(m-0.5*(e+1))^2的最大值(勾股定理)。
把e和m带进去。则上式=1/4*[(n^2-3n)^2+(n^2-3n)^2]=1/2*[(n^2-3n)^2]=1/2*[(n-1.5)^2-2.25]^2。
根据上述,当n-1.5=0时,|[(n-1.5)^2-2.25|最大,所以此时上式取最大值。
此时n=1.5、m=0.25,E(1.5、0.25)
上式开根号,为三角形的高=2.25/
1.414
三角形底边:((3-0)^2+(4-1)^2)^0.5=3*1.414
三角形面积:1/2*3*1.414*2.25/
1.414=3.375
上面说的(AXo+BYo+C)的绝对值除以根号下(A的平方加上B的平方)
这个公式,我不记得了。应该可以推导一下。
高中时解析几何最差了。上面的公式记不得了。只能用基本方法计算。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
亢驰翰濮茗
2020-02-04 · TA获得超过3.1万个赞
知道大有可为答主
回答量:1.1万
采纳率:33%
帮助的人:618万
展开全部

初3的
抛物线
问题
笨蛋
简单死了
(1)把A点带入
求的m=1
∴y=x+1
(2)思路:(太麻烦
不好写啊
告诉你思路吧)把B点求出来
用ABC三点求出解析式
把底和高找到
(注意高不一定只有一个
可能是多解问题)用n表示出来
应该是个2次函数
用定点坐标公示(x=-2a/b
y=4ac-b²/4a)
求出最大值
(注意
两个解中是否有
不符合题意的
要舍去)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
忻梦秋繁仕
2020-02-09 · TA获得超过3万个赞
知道大有可为答主
回答量:1.1万
采纳率:33%
帮助的人:734万
展开全部
(1)因为a(3,4)是直线y=x+m上的点,所以4=3+m,解得m=1,进而求得b(0,1)
设二次函数为y=ax^2+bx+c,把a、b、c三点坐标代入得:
9a+3b+c=4
a+b+c=0
c=1
解得a=1,b=-2,c=1,所以二次函数的关系式为:y=x^2-2x+1
(2)因为p为线段ab上,且横坐标为x,所以纵坐标是x+1,又因为e在二次函数的图像上,且横坐标是x,所以纵坐标是x^2-2x+1,于是h=(x+1)-(x^2-2x+1)=-x^2+3x
(3)显然pe∥dc,因此若p点存在,那么必有pe=dc。因为d为直线ab与这个二次函数图像对称轴的交点,所以d的横坐标为1,因而纵坐标为2,所以dc=2。若pe=2,则有-x^2+3x=2,解得x=2或x=1
(跟c点重合,故舍去)。所以这样的点p是存在的,它的坐标是(2,3)。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式