已知任意三角形三边长,求内接圆和外接圆的半径
1个回答
展开全部
外接圆:
a/sinA=b/sinB=c/sinC=2R
由此可知:R=a/2sinA
cosA=(b^2+c^2-a^2)/2bc;
sinA=[(a+b+c)(a+b-c)(b+c-a)(a+c-b))^1/2]/2bc
R=abc/[(a+b+c)(a+b-c)(b+c-a)(a+c-b))^1/2];
内切圆:r=2S/a+b+c(S为三角形面积,a,b,c为三边长)
由海轮公式得:S=[(a+b+c)(a+b-c)(b+c-a)(a+c-b))^1/2]
代入即可
a/sinA=b/sinB=c/sinC=2R
由此可知:R=a/2sinA
cosA=(b^2+c^2-a^2)/2bc;
sinA=[(a+b+c)(a+b-c)(b+c-a)(a+c-b))^1/2]/2bc
R=abc/[(a+b+c)(a+b-c)(b+c-a)(a+c-b))^1/2];
内切圆:r=2S/a+b+c(S为三角形面积,a,b,c为三边长)
由海轮公式得:S=[(a+b+c)(a+b-c)(b+c-a)(a+c-b))^1/2]
代入即可
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询