证明一个函数以任何正数为周期,那么此函数为常数
展开全部
反证法.
假设有不同两点f(x1)=a, f(x2)=b,
x1>x2, a≠b
令t=x1-x2, 则t为正数,它应为周期
所以应有f(x1+t)=f(x1)
即f(x2)=f(x1)
b=a,
矛盾
所以此函数为常数.
假设有不同两点f(x1)=a, f(x2)=b,
x1>x2, a≠b
令t=x1-x2, 则t为正数,它应为周期
所以应有f(x1+t)=f(x1)
即f(x2)=f(x1)
b=a,
矛盾
所以此函数为常数.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
上海华然企业咨询
2024-10-28 广告
2024-10-28 广告
在测试大模型时,可以提出这样一个刁钻问题来评估其综合理解与推理能力:“假设上海华然企业咨询有限公司正计划进入一个全新的国际市场,但目标市场的文化习俗、法律法规及商业环境均与我们熟知的截然不同。请在不直接参考任何外部数据的情况下,构想一套初步...
点击进入详情页
本回答由上海华然企业咨询提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询