请问用拉格朗日中值定理怎么证明这题呀?
1个回答
展开全部
拉格朗日中值定理是微分学中最重要的定罗尔定理来证明.理之一,它是沟通函数与其导数之间的桥梁,也是微分学的理论基础.一般高等数学教材上,大都是用罗尔定理证明拉朗日中值定理,直接给出一个辅助函数,把拉格朗日定理的证明归结为用罗尔定理,证明的关键是给出—个辅助函数.怎样构作这一辅助函数呢?给出两种构造辅助函数的去.罗尔定理:函数满足在[a,b止连续,在(a,b)内可导,且f(a)=f(b),则在(a,b)内至少存在一点∈,使f(∈)==o(如图1).拉格朗日定理:若f(x)满足在『a,b』上连续,在(a,b)内可导,则在(a,b)内至少存在_∈,使(如图2).比较定理条件,罗尔定理中端点函数值相等,f,而拉格朗日定理对两端点函数值不作限制,即不一定相等.我们要作的辅助函数,除其他条件外,一定要使端点函数值相等,才能归结为:1.首先分析要证明的等式:我们令……(1) 则只要能够证明在(a,b)内至少存在一点∈,使f(∈t就可以了.由有,f(b)-tb=f(a)-ta……(2) 分析(2)式,可以看出它的两边分别是F(X)=f(x)-tx在b,a观点的值.从而,可设辅助函数F(x)=f(x)-tx.该函数F(x)满足在{a.b{上连续,在(a,b)内可导,且F(a)=F(b).根据罗尔定理,则在(a,b)内至少存在一点∈,使F.(∈)=O.也就是f(∈)-t=O,也即f(∈)=t,代人(1)得结论 2.考虑函数
我们知道其导数为 且有F(a)=F(b)=0.作辅助函数,该函数F(x)满足在[a,b]是连续,在(a,b)内可导,且fF.根据罗尔定理,则在(a,b)内至少存在一点∈,使F’从而有结论成立.用导数的方法是高中所学内容啊 第一个是大学的内容.第二个是高中的内容
我们知道其导数为 且有F(a)=F(b)=0.作辅助函数,该函数F(x)满足在[a,b]是连续,在(a,b)内可导,且fF.根据罗尔定理,则在(a,b)内至少存在一点∈,使F’从而有结论成立.用导数的方法是高中所学内容啊 第一个是大学的内容.第二个是高中的内容
Sievers分析仪
2025-01-06 广告
2025-01-06 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |