周期函数的积分是周期函数吗

一个周期函数的积分和微分后分别为什么函数?假设这个函数f(x)=f(x+t)t为周期函数f(x)可积可微[]... 一个周期函数的积分和微分后分别为什么函数?假设这个函数 f(x)=f(x+t)t为周期 函数 f(x)可积可微 [ ] 展开
 我来答
杨叔说娱乐
2021-10-15 · 专注娱乐点评,分享娱乐。
杨叔说娱乐
采纳数:645 获赞数:567532

向TA提问 私信TA
展开全部

a代任何值时一个周期的导数都为零,所以与a无关。

任何一个常数kT(k∈Z,且k≠0)都是它的周期。并且周期函数f(x)的周期T是与x无关的非零常数,且周期函数不一定有最小正周期

设f(x)是定义在数集M上的函数,如果存在非零常数T具有性质:f(x+T)=f(x),则称f(x)是数集M上的周期函数,常数T称为f(x)的一个周期。如果在所有正周期中有一个最小的,则称它是函数f(x)的最小正周期。

∵T*是f(x)的周期,∴对 有X±T* 且f(x+T*)= f(x),∴K f(x)+C=K f(x+T*)+C,

∴K f(x)+C也是M上以T*为周期的周期函数。

假设T* 不是Kf(x)+C的最小正周期,则必存在T’(0<T’<T*)是K f(x)+C的周期,则对T’(0<T’<T*)是K f(x)+C的周期,有K f(x+T’)+C=K f(x) +C K[f(x+T’)- f(x)]=0,∵K≠0,∴f(x+T’)- f(x)=0,∴f(x+T’)= f(x),

∴T’是f(x)的周期,与T*是f(x)的最小正周期矛盾,∴T*也是K f(x)+C的最小正周期。

同理可证1/ f(x)是集{X/ f(x) ≠0,X }上的以T*为最小正周期的周期函数。

图为信息科技(深圳)有限公司
2021-01-25 广告
边缘计算可以咨询图为信息科技(深圳)有限公司了解一下,图为信息科技(深圳)有限公司(简称:图为信息科技)是基于视觉处理的边缘计算方案解决商。作为一家创新企业,多年来始终专注于人工智能领域的发展,致力于为客户提供满意的解决方案。... 点击进入详情页
本回答由图为信息科技(深圳)有限公司提供
茹翊神谕者

2023-05-25 · TA获得超过2.5万个赞
知道大有可为答主
回答量:3.6万
采纳率:76%
帮助的人:1691万
展开全部

简单分析一下,答案如图所示

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
通资查元
2019-11-19 · TA获得超过4819个赞
知道大有可为答主
回答量:3148
采纳率:25%
帮助的人:228万
展开全部
微分后是周期函数.周期函数求导后还是周期函数.积分后不一定,有条件的.如果是定积分出来的函数,f(x)在一个周期上的积分的值是0,那么是周期函数,否则不是.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式