简述高斯投影原理

 我来答
无雅诗hx
高能答主

2020-11-29 · 用力答题,不用力生活
知道顶级答主
回答量:11.3万
采纳率:96%
帮助的人:2905万
展开全部
高斯投影是一种等角投影。它是由德国数学家高斯提出,后经德国大地测量学家克吕格加以补充完善,故又称“高斯—克吕格投影”,简称“高斯投影”。

它是一种等角横轴切椭圆柱投影。是假设一个椭圆柱面与地球椭球体面横切于某一条经线上,按照等角条件将中央经线东、西各3°或1.5°经线范围内的经纬线投影到椭圆柱面上,然后将椭圆柱面展开成平面而成的。

这种投影将中央经线投影为直线,其长度没有变形,与球面实际长度相等,其余经线为向极点收敛的弧线,距中央经线愈远,变形愈大。 赤道线投影后是直线,但有长度变形。除赤道外的其余纬线,投影后为凸向赤道的曲线,并以赤道为对称轴。经线和纬线投影后仍然保持正交。所有长度变形的线段,其长度变形比均大于1. 随远离中央经线,面积变形也愈大。若采用分带投影的方法,可使投影边缘的变形不致过大。我国各种大、中比例尺地形图采用了不同的高斯-克吕格投影带。其中大于1:1万的地形图采用3°带;1:2.5万至1:50万的地形图采用6°带。

高斯投影这一投影的几何概念是假想有一个椭圆柱与地球椭球体上某一经线相切,其椭圆柱的中心轴与赤道平面重合,将地球椭球体面有条件地投影到椭球圆柱面上高斯克吕格投影条件:a) 中央经线和赤道投影为互相垂直的直线,且为投影的对称轴; b) 具有等角投影的性质; c) 中央经线投影后保持长度不变。
温柔斌RO
2021-05-11
知道答主
回答量:1
采纳率:0%
帮助的人:480
展开全部
它是一种等角横轴切椭圆柱投影。是假设一个椭圆柱面与地球椭球体面横切于某一条经线上,按照等角条件将中央经线东、西各3°或1.5°经线范围内的经纬线投影到椭圆柱面上,然后将椭圆柱面展开成平面而成的。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式