已知抛物线C:y=-1/2x^2+6,点P(2,4),A,B在抛物线上,且直线p...

已知抛物线C:y=-1/2x^2+6,点P(2,4),A,B在抛物线上,且直线pA,pB的倾斜角互补.(1)证明:直线AB的斜率为定值(2)当直线AB在y轴上的截距为正数... 已知抛物线C:y=-1/2x^2+6,点P(2,4),A,B在抛物线上,且直线pA,pB的倾斜角互补.(1)证明:直线AB的斜率为定值(2)当直线AB在y轴上的截距为正数时,求三角形PAB面积的最大值及此时直线AB的方程 展开
 我来答
五清资雨筠
2020-06-11 · TA获得超过3824个赞
知道大有可为答主
回答量:3196
采纳率:30%
帮助的人:180万
展开全部
(Ⅰ)证:易知点P在抛物线C上,设PA的斜率为k,则直线PA的方程是y-4=k(x-2).
代入y=-
1
2
x2+6并整理得x2+2kx-4(k+1)=0此时方程应有根xA及2,
由韦达定理得:
2xA=-4(k+1),∴xA=-2(k+1).∴yA=k(xA-2)+4.=-k2-4k+4.∴A(-2(k+1),-k2-4k+4).
由于PA与PB的倾斜角互补,故PB的斜率为-k.
同理可得B(-2(-k+1),-k2+4k+4)
∴kAB=2.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式