已知抛物线C:y=-1/2x^2+6,点P(2,4),A,B在抛物线上,且直线p...
已知抛物线C:y=-1/2x^2+6,点P(2,4),A,B在抛物线上,且直线pA,pB的倾斜角互补.(1)证明:直线AB的斜率为定值(2)当直线AB在y轴上的截距为正数...
已知抛物线C:y=-1/2x^2+6,点P(2,4),A,B在抛物线上,且直线pA,pB的倾斜角互补.(1)证明:直线AB的斜率为定值(2)当直线AB在y轴上的截距为正数时,求三角形PAB面积的最大值及此时直线AB的方程
展开
展开全部
(Ⅰ)证:易知点P在抛物线C上,设PA的斜率为k,则直线PA的方程是y-4=k(x-2).
代入y=-
1
2
x2+6并整理得x2+2kx-4(k+1)=0此时方程应有根xA及2,
由韦达定理得:
2xA=-4(k+1),∴xA=-2(k+1).∴yA=k(xA-2)+4.=-k2-4k+4.∴A(-2(k+1),-k2-4k+4).
由于PA与PB的倾斜角互补,故PB的斜率为-k.
同理可得B(-2(-k+1),-k2+4k+4)
∴kAB=2.
代入y=-
1
2
x2+6并整理得x2+2kx-4(k+1)=0此时方程应有根xA及2,
由韦达定理得:
2xA=-4(k+1),∴xA=-2(k+1).∴yA=k(xA-2)+4.=-k2-4k+4.∴A(-2(k+1),-k2-4k+4).
由于PA与PB的倾斜角互补,故PB的斜率为-k.
同理可得B(-2(-k+1),-k2+4k+4)
∴kAB=2.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询