已知数列{an}前n项和为sn=3n^2-n,求证其为等差数列

 我来答
实振严成荫
2019-12-13 · TA获得超过1180个赞
知道小有建树答主
回答量:1945
采纳率:77%
帮助的人:10.9万
展开全部
解 :
①当n=1 时 a1=S1=2
②当n≥2 时 an=Sn-Sn-1
Sn=3n^2-n
Sn-1= 3(n-1)²-(n-1)
所以an=6n-4 = 2 + 6(n-1)
带入n=1 得到a1=2 符合①
综上所述 an= 2 + 6(n-1)
因为 an+1-an=6
所以 {an}是以2为首项 6为公差的等差数列
哪里不懂的话请追问 理解的话给个采纳哦 谢啦
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式