已知在三角形ABC中,A=2B,求(a/b)+(2b/c)的取值范围?
1个回答
展开全部
根据正弦定理,我们有:
a/sin(A) = b/sin(B) = c/sin(C)
由于A = 2B,我们有sin(A) = sin(2B) = 2sin(B)cos(B),因此:
a/b = sin(A)/sin(B) = (2sin(B)cos(B))/sin(B) = 2cos(B)
2b/c = 2sin(B)/sin(C)
将上述两个式子代入(a/b)+(2b/c),得到:
(a/b)+(2b/c)=2cos(B) + 2sin(B)/sin(C)
= 2(cos(B) + sin(B)/sin(C))
根据三角函数的定义,我们有sin(C) ≤ 1,因此:
2(cos(B) + sin(B)/sin(C)) ≤ 2(cos(B) + sin(B)) ≤ 2√2
因此,(a/b)+(2b/c)的取值范围是[0, 2√2]。
a/sin(A) = b/sin(B) = c/sin(C)
由于A = 2B,我们有sin(A) = sin(2B) = 2sin(B)cos(B),因此:
a/b = sin(A)/sin(B) = (2sin(B)cos(B))/sin(B) = 2cos(B)
2b/c = 2sin(B)/sin(C)
将上述两个式子代入(a/b)+(2b/c),得到:
(a/b)+(2b/c)=2cos(B) + 2sin(B)/sin(C)
= 2(cos(B) + sin(B)/sin(C))
根据三角函数的定义,我们有sin(C) ≤ 1,因此:
2(cos(B) + sin(B)/sin(C)) ≤ 2(cos(B) + sin(B)) ≤ 2√2
因此,(a/b)+(2b/c)的取值范围是[0, 2√2]。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询