运筹学 整数规划割平面法 题求解 200
展开全部
割平面法是1958年由美国学者高莫利(R.E.GoMory)提出的求解全整数规划的一种比较简单的方法。其基本思想和分枝定界法大致相同,即先不考虑变量的取整约束,用单纯形法求解相应的线性规划。
如果所得的最优解为整数解,那么它也是原整数规划问题的最优解3如果最优解不是整数解,那么分枝定界法是任取一个取分数值的变量Xk = bk将原整数规划分成两枝。
其实质是用两个垂直于坐标轴的平行平面Xk = [bk]和Xk = [bk] + 1将原可行域R分成两个可行域R1和R2,并将两个平行平面之间的不含有整数解的那一部分可行域去掉,以缩小可行域。
整数规划又分为:
1、纯整数规划:所有决策变量均要求为整数的整数规划。
2、混合整数规划:部分决策变量均要求为整数的整数规划。
3、纯0-1整数规划:所有决策变量均要求为0-1的整数规划。
4、混合0-1规划:部分决策变量均要求为0-1的整数规划。
展开全部
割平面法是1958年由美国学者高莫利(R.E.GoMory)提出的求解全整数规划的一种比较简单的方法。其基本思想和分枝定界法大致相同,即先不考虑变量的取整约束,用单纯形法求解相应的线性规划。如果所得的最优解为整数解,那么它...
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询