线性代数相关,求解,急 40
3个回答
展开全部
(1)A = (a1, a2, a3, a4) =
[1 2 1 3]
[1 9 0 10]
[1 -1 -3 -7]
[0 3 1 -7]
第 1 行 -1 倍分别加到第 2, 3 行,初等行变换为
[1 2 1 3]
[0 7 -1 7]
[0 -3 -4 -10]
[0 3 1 -7]
第 3 行 2 倍,1 倍分别加到第 2, 4 行,初等行变换为
[1 2 1 3]
[0 1 -9 -13]
[0 -3 -4 -10]
[0 0 -3 -17]
第 2 行 3 倍加到第 3 行,初等行变换为
[1 2 1 3]
[0 1 -9 -13]
[0 0 -31 -49]
[0 0 -3 -17]
显然,第 3, 4 行不成比例, 则 r(a1, a2, a3, a4) = 4,
a1, a2, a3, a4 线性无关, 是一个极大无关组。
另两题仿作即可。
追答: 若继续进行初等行变换,则第 3 行 -3/31 倍加到第 4 行, 得
[1 2 1 3]
[0 1 -9 -13]
[0 0 -31 -49]
[0 0 0 -380/31]
则 r(a1, a2, a3, a4) = 4,
a1, a2, a3, a4 线性无关, 是一个极大无关组。
[1 2 1 3]
[1 9 0 10]
[1 -1 -3 -7]
[0 3 1 -7]
第 1 行 -1 倍分别加到第 2, 3 行,初等行变换为
[1 2 1 3]
[0 7 -1 7]
[0 -3 -4 -10]
[0 3 1 -7]
第 3 行 2 倍,1 倍分别加到第 2, 4 行,初等行变换为
[1 2 1 3]
[0 1 -9 -13]
[0 -3 -4 -10]
[0 0 -3 -17]
第 2 行 3 倍加到第 3 行,初等行变换为
[1 2 1 3]
[0 1 -9 -13]
[0 0 -31 -49]
[0 0 -3 -17]
显然,第 3, 4 行不成比例, 则 r(a1, a2, a3, a4) = 4,
a1, a2, a3, a4 线性无关, 是一个极大无关组。
另两题仿作即可。
追答: 若继续进行初等行变换,则第 3 行 -3/31 倍加到第 4 行, 得
[1 2 1 3]
[0 1 -9 -13]
[0 0 -31 -49]
[0 0 0 -380/31]
则 r(a1, a2, a3, a4) = 4,
a1, a2, a3, a4 线性无关, 是一个极大无关组。
展开全部
1)A = (a1, a2, a3, a4) = [1 2 1 3] [1 9 0 10] [1 -1 -3 -7] [0 3 1 -7] 第 1 行 -1 倍分别加到第 2, 3 行,初等行变换为 [1 2 1 3] [0 7 -1 7] [0 -3 -4 -10] [0 3 1 -7] 第 3 行 2 倍,1 倍分别加到第 2,
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询