求函数z=x^4+y^4-4xy的二阶偏导数э^2 z/эx^2 ,э^2 z/эy^2 ,э^2 z/эxэy
1个回答
展开全部
э^2 z/эx^2=12x^2;
э^2 z/эy^2=12y^2;
э^2 z/эxэy=-4.
эz/эx=4x^3-4y;эz/эy=4y^3-4x;
所以:
э^2 z/эx^2=э(эz/эx)/эx=э(4x^3-4y)/эx=4*3x^2=12x^2;
э^2 z/эy^2=э(эz/эy)/эy=э(4y^3-4x)/эy=4*3y^2=12y^2;
э^2 z/эxэy=э(эz/эy)/эx=э(4y^3-4x)/эx=-4.
э^2 z/эy^2=12y^2;
э^2 z/эxэy=-4.
эz/эx=4x^3-4y;эz/эy=4y^3-4x;
所以:
э^2 z/эx^2=э(эz/эx)/эx=э(4x^3-4y)/эx=4*3x^2=12x^2;
э^2 z/эy^2=э(эz/эy)/эy=э(4y^3-4x)/эy=4*3y^2=12y^2;
э^2 z/эxэy=э(эz/эy)/эx=э(4y^3-4x)/эx=-4.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询