1加1/2加1/3加到1/N的和是多少,问过蛮多人都说无解.

 我来答
温屿17
2022-05-11 · TA获得超过1.2万个赞
知道小有建树答主
回答量:827
采纳率:0%
帮助的人:96.3万
展开全部
欧拉常数(Euler-Mascheroni constant)
欧拉-马歇罗尼常数(Euler-Mascheroni constant)是一个主要应用于数论的数学常数.它的定义是调和级数与自然对数的差值.
学过高等数学的人都知道,调和级数S=1+1/2+1/3+……是发散的,
证明如下:
由于ln(1+1/n)ln(1+1)+ln(1+1/2)+ln(1+1/3)+…+ln(1+1/n)
=ln2+ln(3/2)+ln(4/3)+…+ln[(n+1)/n]
=ln[2*3/2*4/3*…*(n+1)/n]=ln(n+1)
由于
lim Sn(n→∞)≥lim ln(n+1)(n→∞)=+∞
所以Sn的极限不存在,调和级数发散.
但极限S=lim[1+1/2+1/3+…+1/n-ln(n)](n→∞)却存在,因为
Sn=1+1/2+1/3+…+1/n-ln(n)>ln(1+1)+ln(1+1/2)+ln(1+1/3)+…+ln(1+1/n)-ln(n)
=ln(n+1)-ln(n)=ln(1+1/n)
由于
lim Sn(n→∞)≥lim ln(1+1/n)(n→∞)=0
因此Sn有下界

Sn-S(n+1)=1+1/2+1/3+…+1/n-ln(n)-[1+1/2+1/3+…+1/(n+1)-ln(n+1)]
=ln(n+1)-ln(n)-1/(n+1)=ln(1+1/n)-1/(n+1)
将ln(1+1/n)展开,取其前两项,由于舍弃的项之和大于0,故
ln(1+1/n)-1/(n+1)>1/n-1/(2n^2)-1/(n+1)=1/(n^2+n)-1/(2n^2)>0
即ln(1+1/n)-1/(n+1)>0,所以Sn单调递减.由单调有界数列极限定理,可知Sn必有极限,因此   S=lim[1+1/2+1/3+…+1/n-ln(n)](n→∞)存在.
于是设这个数为γ,这个数就叫作欧拉常数,他的近似值约为0.57721566490153286060651209,目前还不知道它是有理数还是无理数.在微积分学中,欧拉常数γ有许多应用,如求某些数列的极限,某些收敛数项级数的和等.例如求lim[1/(n+1)+1/(n+2)+…+1/(n+n)](n→∞),可以这样做:
lim[1/(n+1)+1/(n+2)+…+1/(n+n)](n→∞)=lim[1+1/2+1/3+…+1/(n+n)-ln(n+n)](n→∞)-lim[1+1/2+1/3+…+1/n-ln(n)](n→∞)+lim[ln(n+n)-ln(n)](n→∞)=γ-γ+ln2=ln2
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式