x乘x乘x-3/4x等于3/2,X等于多少?
解:方程为x³-3/4×x=3/2,化为x³-0.75x-1.5=0,得:x₁=1.3609461421185716,x₂=-0.6804730710592858+0.7994565662439501i,x₃=-0.6804730710592858-0.7994565662439501i
请参考
一元三次方程有三种解法,包括卡尔丹公式法、盛金公式法和因式分解法。简单地说就是公式法和因式分解法。和一元二次方程的解法中的公式法和因式分解法有相似之处,公式法适用于一切方程,而因式分解法一般只适用于存在有理数根的方程。当然三次方程应用因式分解法的主要目的是为了降次,因此它也有可能在存在无理根或复数根时使用因式分解法。
卡尔丹公式法相对比较复杂,而盛金公式法就简单得多。纯讲知识的内容既干枯燥又难懂,因此接下来就对这个方法,分别运用两个公式,做一个演示,希望能你从演示的过程中得到启发,学会这两种公式法。
三次方程x^3+x^2-x+1=0中,a=1, b=1, c=-1,d=1. 令x=y-b/(3a)=y-1/3代入方程,得到:(y-1/3)^3+(y-1/3)^2-(y-1/3)+1=0,化简得y^3-4y/3+38/27=0. 这是特殊型的一元三次方程y^3+py+q=0(p,q∈R). 其中p=-4/3, q=38/27.
接下来求卡尔丹判别式:△=(q/2)^2+(p/3)^3=361/729-64/729=11/27. 当Δ>0时,方程有一个实根和一对共轭虚根;当Δ=0时,方程有三个实根,其中有一个两重根;当Δ<0时,方程有三个不相等的实根。这里属于第二种情形。
u=三次根号内(-q/2+根号(△))=三次根号内(-19/27+根号(11/27))=三次根号内(-19+3倍根号33)/3, v=三次根号内(-19-3倍根号33)/3.
而方程的实根y1=u+v. 两个共轭虚根分别是y2=wu+w^2v和y3=w^2u+wv,其中w=(-1+根号3 i)/2. 把u,v代入耐心求解就可以得到y的三个解。最后还要代入x=y-1/3,求得x的三个解。