e的x次方不等于0。因为f(x)=e^x是一个指数函数,根据指数函数定义可知f(x)>0,可以这样理解,当x趋于负无穷求e^x的值,等价于x趋于正无穷求(1/e)^x的值。显然根据指数函数图像的性质,这个函数单调递减且大于0,所以当x趋于正无穷大时,(1/e)^x趋于0。即x趋近于负无穷时,e^x趋于0,但不会等于0。
导数的概念
导数是微积分中的重要基础概念。不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。