有理数的定义及分类
整数和分数统称为有理数。下面就和我一起了解一下有理数的分类及运算定律吧,供大家参考。
什么是有理数
有理数为整数(正整数、0、负整数)和分数的统称。
正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。因而有理数集的数可分为正有理数、负有理数和零。
有理数性质:在数学上,有理数是一个整数a和一个正整数b的比,例如3/8,通则为a/b。0也是有理数。有理数是整数和分数的集合,整数也可看做是分母为一的分数。有理数的小数部分是有限或为无限循环的数。不是有理数的实数称为无理数,即无理数的小数部分是无限不循环的数。
有理数的分类
1、按整数、分数的关系分类:
2、按正数、负数与0的关系分类:
注意:通常把正数和0统称为非负数,负数和0统称为非正数,正整数和0称为非负整数(也叫做自然数),负整数和0统称为非正整数。如果用字母表示数,则a>0表明a是正数;a<0表明a是负数;a0表明a是非负数;a0表明a是非正数。
有理数运算定律
1、加法运算律:
(1)加法交换律:两个数相加,交换加数的位置,和不变,即(a+b)+c=a+(b+c)。
(2)加法结合律:三个数相加,先把前两个数相加或者先把后两个数相加,和不变,即a+b=b+a。
2、减法运算律:
减法运算律:减去一个数,等于加上这个数的相反数。即:a-b=a+(-b)。
3、乘法运算律:
(1)乘法交换律:两个数相乘,交换因数的位置,积不变,即ab=ba。
(2)乘法结合律:三个数相乘,先把前两个数先乘,或者先把后两个相乘,积不变,即(ab)c=a(bc)。
(3)乘法分配律:某个数与两个数的和相乘等于把这个数分别与这两个数相乘,再把积相加,即a(a+b)=ab+ac。