∫(0到x)(x2-t2)f(t)dt对x的导数怎么求?
1个回答
展开全部
令F(x)=∫(0→x)(x^2-t^2)f(t)dt=(x^2)∫(0→x)f(t)dt-∫(0→x)(t^2)f(t)dt
则F'(x)=[2x∫(0→x)f(t)dt+(x^2)f(x)]-(x^2)f(x)=2x∫(0→x)f(t)dt
则F'(x)=[2x∫(0→x)f(t)dt+(x^2)f(x)]-(x^2)f(x)=2x∫(0→x)f(t)dt
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询